Chronic kidney disease (CKD) is a global public health issue affecting 9-13% of the population. Despite advances in understanding the underlying causes, 20% of cases remain unexplained. The application of a genomic approach holds the potential to uncover the CKD etiology in a relevant portion of pediatric and adult patients, with estimated diagnostic rates ranging from 5-30%. However, there is a lack of consensus in the scientific community on the optimal diagnostic algorithm. Genetic approaches include targeted panels, whole exome sequencing (WES), and whole genome sequencing (WGS). While WGS offers a comprehensive analysis, its employment is less widespread due to high costs and computational burden. Identifying a genetic diagnosis carries significant implications for tailored therapy, avoiding invasive investigations, monitoring extra-renal manifestations, and conducting genetic counseling for family planning. Genetic testing is a crucial component of precision medicine in managing CKD. In this perspective, we conducted a retrospective study to assess the diagnostic yield and clinical impact of a Nephropathy panel (NES) covering 44 genes for genetic kidney diseases. The study, named DECIDE, involved Italian and Spanish centers encompassing pediatric and adult patients. Clinical presentation was classified into cystic disease, glomerulopathy, CAKUT, tubulopathy, nephrocalcinosis/nephrolithiasis (NC/NL), unknown CKD, and at risk with negative phenotype. The NES panel’s diagnostic yield was calculated. The genotype-phenotype correlation was assessed using Kaplan-Meier analyses. Results from alternative technologies were collected for negative cases. Employing machine learning, the sensitivity and specificity were defined, and an algorithm with the model-defined predictive features was developed to predict the performance of the test in the patient's clinical setting. Of 809 patients, 692 index cases were analyzed. Cystic kidney disease was the most common presentation (371 patients), followed by glomerulopathy (184 patients). The other 5 clinical presentations made a minor contribution: CAKUT (45), NC/NL (36), tubulopathy (22), unknown CKD (22), and 12 showed a negative renal phenotype but they were at risk of disease development. A total of 252 diagnostic variants were identified, resulting in a 36% yield. Cystic kidney disease had the highest yield (49%, 183 positive cases), followed by tubulopathy (32%, 7), glomerulopathy (28%, 52), CAKUT (13%, 6) and NC/NL (11%, 4). No diagnostic variants were found in cases of unknown CKD or at risk with negative phenotypes. Eight genes accounted for 95% of the diagnosis: PKD1 (47%), PKD2 (21%), COL4A5 (9%), COL4A3 (7%), COL4A4 (4%), PKHD1 (4%), SLC12A3 (2%), CYP24A1 (2%). Diagnostic results confirmed clinical indications in 74% of cases, defined the diagnosis in 20%, and altered clinical suspicion in 6%. In 25 cases with negative NES results, further investigations led to only three diagnoses (one with WES, two with panels). The analysis of the clinical predictors of a positive result highlighted a relevant strength of the family history (OR 4.7) and the cystic phenotype (OR 6.0) in achieving a definitive diagnosis. This evidence permitted the elaboration of a diagnostic algorithm to identify which cases would benefit most from the test. In conclusion, the results showed the potential value of the NES panel in diagnosing genetic kidney disease, particularly in cystic disease or glomerulopathy cases. However, 64% of patients remain undiagnosed, leading to the proposal of a national project to explore WGS as a potential solution. This proposal will aim to improve diagnostic capabilities, pivotal in advancing personalized therapy and understanding of genetic kidney diseases.

La Malattia Renale Cronica (MRC) rappresenta un problema di salute pubblica, colpendo il 9-13% della popolazione. Nonostante i progressi nella comprensione delle sue cause, il 20% dei casi rimane senza diagnosi. L'applicazione di un approccio genomico offre la possibilità di individuare l'eziologia della MRC in una parte significativa di pazienti pediatrici e adulti, con una performance diagnostica tra il 5% e il 30%. Le tecnologie disponibili comprendono pannelli mirati, sequenziamento dell'esoma (ES) e del genoma (GS). Tuttavia, la comunità scientifica non ha ancora raggiunto un consenso in merito al miglior algoritmo diagnostico. La diagnosi genetica non solo permette terapie mirate, ma anche di evitare indagini invasive, monitorare aspetti sindromici e fornire consulenza per la pianificazione familiare. In questa prospettiva, abbiamo condotto uno studio retrospettivo per valutare la performance diagnostica e l'impatto clinico di un pannello nefropatico (NES) comprendente 44 geni associati alle malattie genetiche renali. Lo studio, denominato DECIDE, ha coinvolto centri italiani e spagnoli, comprendendo casi sia pediatrici che dell’adulto. La presentazione clinica è stata classificata in malattia cistica, glomerulopatia, CAKUT, tubulopatia, nefrocalcinosi/nefrolitiasi (NC/NL), MRC non definita e fenotipo negativo ma a rischio. E’ stata calcolata la performance diagnostica del pannello ed è stata valutata la correlazione genotipo-fenotipo con analisi di Kaplan-Meier. Nei casi di esito negativo con pannello NES, sono stati raccolti i risultati di ulteriori indagini. Attraverso l'utilizzo di machine learning, sono stati definiti sensibilità e specificità, utilizzati per creare un algoritmo che predica la performance del test in base al contesto clinico. Su 809 pazienti, sono stati analizzati 692 casi indice. La malattia cistica renale è risultata essere la presentazione clinica più comune (371 pazienti), seguita dalla glomerulopatia (184 pazienti). Le altre cinque hanno contribuito in modo minore: CAKUT (45), NC/NL (36), tubulopatia (22), MRC non definita (22) e 12 casi con fenotipo renale negativo ma a rischio. Complessivamente, sono state identificate 252 varianti diagnostiche, con una resa del 36%. La malattia cistica renale ha mostrato la sensibilità più elevata (49%, 183 casi positivi), seguita dalla tubulopatia (32%, 7), glomerulopatia (28%, 52), CAKUT (13%, 6) e NC/NL (11%, 4). Nessuna variante diagnostica è stata individuata nei casi di MRC non definita o con fenotipo negativo. Sono stati poi individuati otto geni che hanno determinato il 95% delle diagnosi: PKD1 (47%), PKD2 (21%), COL4A5 (9%), COL4A3 (7%), COL4A4 (4%), PKHD1 (4%), SLC12A3 (2%), CYP24A1 (2%). I risultati diagnostici hanno confermato le indicazioni cliniche nel 74% dei casi, definito la diagnosi nel 20% e modificato il sospetto clinico nel 6%. In 25 casi con esito negativo al test, sono state effettuate ulteriori indagini genetiche che hanno portato a sole 3 diagnosi aggiuntive (1 ES e 2 con pannelli). L'analisi dei predittori clinici ha evidenziato che la storia famigliare (OR 4.7) e il fenotipo cistico (OR 6.0) sono determinanti per il raggiungimento di una diagnosi definitiva. Queste evidenze hanno permesso la formulazione di un algoritmo predittivo che verrà implementato nella pratica clinica. In conclusione, i risultati hanno evidenziato il potenziale diagnostico del pannello NES, specialmente nei casi di malattia cistica o glomerulopatia. Tuttavia, il 64% dei pazienti è rimasto senza diagnosi, portandoci alla proposta di un progetto nazionale basato sull’analisi in GS. Questa proposta mirerà a potenziare le capacità diagnostiche, fondamentali per individuare terapie mirate e per la comprensione delle malattie renali genetiche.

Medicina di Precisione applicata alla Malattia Renale Cronica: Capacità diagnostica e impatto clinico di un Pannello Nefropatico / Silvia Giovanella , 2024 May 24. 36. ciclo, Anno Accademico 2022/2023.

Medicina di Precisione applicata alla Malattia Renale Cronica: Capacità diagnostica e impatto clinico di un Pannello Nefropatico.

GIOVANELLA, SILVIA
2024

Abstract

Chronic kidney disease (CKD) is a global public health issue affecting 9-13% of the population. Despite advances in understanding the underlying causes, 20% of cases remain unexplained. The application of a genomic approach holds the potential to uncover the CKD etiology in a relevant portion of pediatric and adult patients, with estimated diagnostic rates ranging from 5-30%. However, there is a lack of consensus in the scientific community on the optimal diagnostic algorithm. Genetic approaches include targeted panels, whole exome sequencing (WES), and whole genome sequencing (WGS). While WGS offers a comprehensive analysis, its employment is less widespread due to high costs and computational burden. Identifying a genetic diagnosis carries significant implications for tailored therapy, avoiding invasive investigations, monitoring extra-renal manifestations, and conducting genetic counseling for family planning. Genetic testing is a crucial component of precision medicine in managing CKD. In this perspective, we conducted a retrospective study to assess the diagnostic yield and clinical impact of a Nephropathy panel (NES) covering 44 genes for genetic kidney diseases. The study, named DECIDE, involved Italian and Spanish centers encompassing pediatric and adult patients. Clinical presentation was classified into cystic disease, glomerulopathy, CAKUT, tubulopathy, nephrocalcinosis/nephrolithiasis (NC/NL), unknown CKD, and at risk with negative phenotype. The NES panel’s diagnostic yield was calculated. The genotype-phenotype correlation was assessed using Kaplan-Meier analyses. Results from alternative technologies were collected for negative cases. Employing machine learning, the sensitivity and specificity were defined, and an algorithm with the model-defined predictive features was developed to predict the performance of the test in the patient's clinical setting. Of 809 patients, 692 index cases were analyzed. Cystic kidney disease was the most common presentation (371 patients), followed by glomerulopathy (184 patients). The other 5 clinical presentations made a minor contribution: CAKUT (45), NC/NL (36), tubulopathy (22), unknown CKD (22), and 12 showed a negative renal phenotype but they were at risk of disease development. A total of 252 diagnostic variants were identified, resulting in a 36% yield. Cystic kidney disease had the highest yield (49%, 183 positive cases), followed by tubulopathy (32%, 7), glomerulopathy (28%, 52), CAKUT (13%, 6) and NC/NL (11%, 4). No diagnostic variants were found in cases of unknown CKD or at risk with negative phenotypes. Eight genes accounted for 95% of the diagnosis: PKD1 (47%), PKD2 (21%), COL4A5 (9%), COL4A3 (7%), COL4A4 (4%), PKHD1 (4%), SLC12A3 (2%), CYP24A1 (2%). Diagnostic results confirmed clinical indications in 74% of cases, defined the diagnosis in 20%, and altered clinical suspicion in 6%. In 25 cases with negative NES results, further investigations led to only three diagnoses (one with WES, two with panels). The analysis of the clinical predictors of a positive result highlighted a relevant strength of the family history (OR 4.7) and the cystic phenotype (OR 6.0) in achieving a definitive diagnosis. This evidence permitted the elaboration of a diagnostic algorithm to identify which cases would benefit most from the test. In conclusion, the results showed the potential value of the NES panel in diagnosing genetic kidney disease, particularly in cystic disease or glomerulopathy cases. However, 64% of patients remain undiagnosed, leading to the proposal of a national project to explore WGS as a potential solution. This proposal will aim to improve diagnostic capabilities, pivotal in advancing personalized therapy and understanding of genetic kidney diseases.
Precision Medicine for Chronic Kidney Disease: Diagnostic yield and clinical impact of a Nephropathy Panel Study.
24-mag-2024
MAGISTRONI, Riccardo
CAPPELLI, Gianni
File in questo prodotto:
File Dimensione Formato  
Tesi dottorato CEM_Giovanella Silvia.pdf

embargo fino al 23/11/2025

Descrizione: Tesi definitiva_Giovanella Silvia
Tipologia: Tesi di dottorato
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1342527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact