We address quantum characterization of anisotropic spin chains in the presence of anti-symmetric exchange, and investigate whether the Hamiltonian parameters of the chain may be estimated with precision approaching the ultimate limit imposed by quantum mechanics. At variance with previous approaches, we focus on the information that may be extracted by measuring only two neighboring spins rather than a global observable on the entire chain. We evaluate the Fisher information (FI) of a two-spin magnetization measure, and the corresponding quantum Fisher information (QFI), for all the relevant parameters, i.e. the spin coupling, the anisotropy, and the Dzyaloshinskii–Moriya (DM) parameter. Our results show that the reduced system made of two neighboring spins may be indeed exploited as a probe to characterize global properties of the entire system. In particular, we find that the ratio between the FI and the QFI is close to unit for a large range of the coupling values. The DM coupling is beneficial for coupling estimation, since it leads to the presence of additional bumps and peaks in the FI and QFI, which are not present in a model that neglects exchange interaction and may be exploited to increase the robustness of the overall estimation procedure. Finally, we address the multiparameter estimation problem, and show that the model is compatible but sloppy, i.e. both the Uhlmann curvature and the determinant of the QFI matrix vanish. Physically, this means that the state of the system actually depends only on a reduced numbers of combinations of parameters, and not on all of them separately.

Characterization of partially accessible anisotropic spin chains in the presence of anti-symmetric exchange / Cavazzoni, Simone; Adani, Marco; Bordone, Paolo; Paris, Matteo G. A.. - In: NEW JOURNAL OF PHYSICS. - ISSN 1367-2630. - 26:5(2024), pp. 052024-1-052024-12. [10.1088/1367-2630/ad48ae]

Characterization of partially accessible anisotropic spin chains in the presence of anti-symmetric exchange

Simone Cavazzoni
;
Paolo Bordone;
2024

Abstract

We address quantum characterization of anisotropic spin chains in the presence of anti-symmetric exchange, and investigate whether the Hamiltonian parameters of the chain may be estimated with precision approaching the ultimate limit imposed by quantum mechanics. At variance with previous approaches, we focus on the information that may be extracted by measuring only two neighboring spins rather than a global observable on the entire chain. We evaluate the Fisher information (FI) of a two-spin magnetization measure, and the corresponding quantum Fisher information (QFI), for all the relevant parameters, i.e. the spin coupling, the anisotropy, and the Dzyaloshinskii–Moriya (DM) parameter. Our results show that the reduced system made of two neighboring spins may be indeed exploited as a probe to characterize global properties of the entire system. In particular, we find that the ratio between the FI and the QFI is close to unit for a large range of the coupling values. The DM coupling is beneficial for coupling estimation, since it leads to the presence of additional bumps and peaks in the FI and QFI, which are not present in a model that neglects exchange interaction and may be exploited to increase the robustness of the overall estimation procedure. Finally, we address the multiparameter estimation problem, and show that the model is compatible but sloppy, i.e. both the Uhlmann curvature and the determinant of the QFI matrix vanish. Physically, this means that the state of the system actually depends only on a reduced numbers of combinations of parameters, and not on all of them separately.
2024
20-mag-2024
26
5
052024-1
052024-12
Characterization of partially accessible anisotropic spin chains in the presence of anti-symmetric exchange / Cavazzoni, Simone; Adani, Marco; Bordone, Paolo; Paris, Matteo G. A.. - In: NEW JOURNAL OF PHYSICS. - ISSN 1367-2630. - 26:5(2024), pp. 052024-1-052024-12. [10.1088/1367-2630/ad48ae]
Cavazzoni, Simone; Adani, Marco; Bordone, Paolo; Paris, Matteo G. A.
File in questo prodotto:
File Dimensione Formato  
New_J._Phys._26_053024.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1340426
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact