: Nanofluidic channels in a membrane represent a promising avenue for harnessing blue energy from salinity gradients, relying on permselectivity as a pivotal characteristic crucial for inducing electricity through diffusive ion transport. Surface charge emerges as a central player in the osmotic energy conversion process, emphasizing the critical significance of a judicious selection of membrane materials to achieve optimal ion permeability and selectivity within specific channel dimensions. Alternatively, here we report a field-effect approach for in situ manipulation of the ion selectivity in a nanopore. Application of voltage to a surround-gate electrode allows precise adjustment of the surface charge density at the pore wall. Leveraging the gating control, we demonstrate permselectivity turnover to enhanced cation selective transport in multipore membranes, resulting in a 6-fold increase in the energy conversion efficiency with a power density of 15 W/m2 under a salinity gradient. These findings not only advance our fundamental understanding of ion transport in nanochannels but also provide a scalable and efficient strategy for nanoporous membrane osmotic power generation.

Gate-All-Around Nanopore Osmotic Power Generators / Tsutsui, Makusu; Hsu, Wei-Lun; Garoli, Denis; Leong, Iat Wai; Yokota, Kazumichi; Daiguji, Hirofumi; Kawai, Tomoji. - In: ACS NANO. - ISSN 1936-086X. - (2024), pp. 1-8. [10.1021/acsnano.4c01989]

Gate-All-Around Nanopore Osmotic Power Generators

Garoli, Denis
;
2024

Abstract

: Nanofluidic channels in a membrane represent a promising avenue for harnessing blue energy from salinity gradients, relying on permselectivity as a pivotal characteristic crucial for inducing electricity through diffusive ion transport. Surface charge emerges as a central player in the osmotic energy conversion process, emphasizing the critical significance of a judicious selection of membrane materials to achieve optimal ion permeability and selectivity within specific channel dimensions. Alternatively, here we report a field-effect approach for in situ manipulation of the ion selectivity in a nanopore. Application of voltage to a surround-gate electrode allows precise adjustment of the surface charge density at the pore wall. Leveraging the gating control, we demonstrate permselectivity turnover to enhanced cation selective transport in multipore membranes, resulting in a 6-fold increase in the energy conversion efficiency with a power density of 15 W/m2 under a salinity gradient. These findings not only advance our fundamental understanding of ion transport in nanochannels but also provide a scalable and efficient strategy for nanoporous membrane osmotic power generation.
2024
1
8
Gate-All-Around Nanopore Osmotic Power Generators / Tsutsui, Makusu; Hsu, Wei-Lun; Garoli, Denis; Leong, Iat Wai; Yokota, Kazumichi; Daiguji, Hirofumi; Kawai, Tomoji. - In: ACS NANO. - ISSN 1936-086X. - (2024), pp. 1-8. [10.1021/acsnano.4c01989]
Tsutsui, Makusu; Hsu, Wei-Lun; Garoli, Denis; Leong, Iat Wai; Yokota, Kazumichi; Daiguji, Hirofumi; Kawai, Tomoji
File in questo prodotto:
File Dimensione Formato  
2024_ACS_nano_tsutsui-et-al-2024-gate-all-around-nanopore-osmotic-power-generators.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 7.03 MB
Formato Adobe PDF
7.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1340072
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact