On-device learning remains a formidable challenge, especially when dealing with resource-constrained devices that have limited computational capabilities. This challenge is primarily rooted in two key issues: first, the memory available on embedded devices is typically insufficient to accommodate the memory-intensive back-propagation algorithm, which often relies on floating-point precision. Second, the development of learning algorithms on models with extreme quantization levels, such as Binary Neural Networks (BNNs), is critical due to the drastic reduction in bit representation. In this study, we propose a solution that combines recent advancements in the field of Continual Learning (CL) and Binary Neural Networks to enable on-device training while maintaining competitive performance. Specifically, our approach leverages binary latent replay (LR) activations and a novel quantization scheme that significantly reduces the number of bits required for gradient computation. The experimental validation demonstrates a significant accuracy improvement in combination with a noticeable reduction in memory requirement, confirming the suitability of our approach in expanding the practical applications of deep learning in real-world scenarios.
Enabling On-Device Continual Learning with Binary Neural Networks and Latent Replay / Vorabbi, Lorenzo; Maltoni, Davide; Borghi, Guido; Santi, Stefano. - 2:(2024), pp. 25-36. (Intervento presentato al convegno 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2024 tenutosi a Rome nel February 27-29, 2024) [10.5220/0012269000003660].
Enabling On-Device Continual Learning with Binary Neural Networks and Latent Replay
Guido Borghi;
2024
Abstract
On-device learning remains a formidable challenge, especially when dealing with resource-constrained devices that have limited computational capabilities. This challenge is primarily rooted in two key issues: first, the memory available on embedded devices is typically insufficient to accommodate the memory-intensive back-propagation algorithm, which often relies on floating-point precision. Second, the development of learning algorithms on models with extreme quantization levels, such as Binary Neural Networks (BNNs), is critical due to the drastic reduction in bit representation. In this study, we propose a solution that combines recent advancements in the field of Continual Learning (CL) and Binary Neural Networks to enable on-device training while maintaining competitive performance. Specifically, our approach leverages binary latent replay (LR) activations and a novel quantization scheme that significantly reduces the number of bits required for gradient computation. The experimental validation demonstrates a significant accuracy improvement in combination with a noticeable reduction in memory requirement, confirming the suitability of our approach in expanding the practical applications of deep learning in real-world scenarios.File | Dimensione | Formato | |
---|---|---|---|
122690.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
625.37 kB
Formato
Adobe PDF
|
625.37 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris