Despite the widespread adoption of face recognition technology around the world, and its remarkable performance on current benchmarks, there are still several challenges that must be covered in more detail. This paper offers an overview of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at WACV 2024. This is the first international challenge aiming to explore the use of synthetic data in face recognition to address existing limitations in the technology. Specifically, the FRCSyn Challenge targets concerns related to data privacy issues, demographic biases, generalization to unseen scenarios, and performance limitations in challenging scenarios, including significant age disparities between enrollment and testing, pose variations, and occlusions. The results achieved in the FRCSyn Challenge, together with the proposed benchmark, contribute significantly to the application of synthetic data to improve face recognition technology.

FRCSyn Challenge at WACV 2024:Face Recognition Challenge in the Era of Synthetic Data / Melzi, Pietro; Tolosana, Ruben; Vera-Rodriguez, Ruben; Kim, Minchul; Rathgeb, Christian; Liu, Xiaoming; DeAndres-Tame, Ivan; Morales, Aythami; Fierrez, Julian; Ortega-Garcia, Javier; Zhao, Weisong; Zhu, Xiangyu; Yan, Zheyu; Zhang, Xiao-Yu; Wu, Jinlin; Lei, Zhen; Tripathi, Suvidha; Kothari, Mahak; Haider Zama, Md; Deb, Debayan; Biesseck, Bernardo; Vidal, Pedro; Granada, Roger; Fickel, Guilherme; Führ, Gustavo; Menotti, David; Unnervik, Alexander; George, Anjith; Ecabert, Christophe; Otroshi Shahreza, Hatef; Rahimi, Parsa; Marcel, Sébastien; Sarridis, Ioannis; Koutlis, Christos; Baltsou, Georgia; Papadopoulos, Symeon; Diou, Christos; Di Domenico, Nicolò; Borghi, Guido; Pellegrini, Lorenzo; Mas-Candela, Enrique; Sánchez-Pérez, Ángela; Atzori, Andrea; Boutros, Fadi; Damer, Naser; Fenu, Gianni; Marras, Mirko. - (2024), pp. 892-901. (Intervento presentato al convegno 2024 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, WACVW 2024 tenutosi a Waikoloa, Hawaii, United States of America nel 4-8 gennaio 2024) [10.1109/WACVW60836.2024.00100].

FRCSyn Challenge at WACV 2024:Face Recognition Challenge in the Era of Synthetic Data

Guido Borghi;
2024

Abstract

Despite the widespread adoption of face recognition technology around the world, and its remarkable performance on current benchmarks, there are still several challenges that must be covered in more detail. This paper offers an overview of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at WACV 2024. This is the first international challenge aiming to explore the use of synthetic data in face recognition to address existing limitations in the technology. Specifically, the FRCSyn Challenge targets concerns related to data privacy issues, demographic biases, generalization to unseen scenarios, and performance limitations in challenging scenarios, including significant age disparities between enrollment and testing, pose variations, and occlusions. The results achieved in the FRCSyn Challenge, together with the proposed benchmark, contribute significantly to the application of synthetic data to improve face recognition technology.
2024
2024 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, WACVW 2024
Waikoloa, Hawaii, United States of America
4-8 gennaio 2024
892
901
Melzi, Pietro; Tolosana, Ruben; Vera-Rodriguez, Ruben; Kim, Minchul; Rathgeb, Christian; Liu, Xiaoming; DeAndres-Tame, Ivan; Morales, Aythami; Fierrez...espandi
FRCSyn Challenge at WACV 2024:Face Recognition Challenge in the Era of Synthetic Data / Melzi, Pietro; Tolosana, Ruben; Vera-Rodriguez, Ruben; Kim, Minchul; Rathgeb, Christian; Liu, Xiaoming; DeAndres-Tame, Ivan; Morales, Aythami; Fierrez, Julian; Ortega-Garcia, Javier; Zhao, Weisong; Zhu, Xiangyu; Yan, Zheyu; Zhang, Xiao-Yu; Wu, Jinlin; Lei, Zhen; Tripathi, Suvidha; Kothari, Mahak; Haider Zama, Md; Deb, Debayan; Biesseck, Bernardo; Vidal, Pedro; Granada, Roger; Fickel, Guilherme; Führ, Gustavo; Menotti, David; Unnervik, Alexander; George, Anjith; Ecabert, Christophe; Otroshi Shahreza, Hatef; Rahimi, Parsa; Marcel, Sébastien; Sarridis, Ioannis; Koutlis, Christos; Baltsou, Georgia; Papadopoulos, Symeon; Diou, Christos; Di Domenico, Nicolò; Borghi, Guido; Pellegrini, Lorenzo; Mas-Candela, Enrique; Sánchez-Pérez, Ángela; Atzori, Andrea; Boutros, Fadi; Damer, Naser; Fenu, Gianni; Marras, Mirko. - (2024), pp. 892-901. (Intervento presentato al convegno 2024 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, WACVW 2024 tenutosi a Waikoloa, Hawaii, United States of America nel 4-8 gennaio 2024) [10.1109/WACVW60836.2024.00100].
File in questo prodotto:
File Dimensione Formato  
WACV2024_FRCSyn.pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1339393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
social impact