Photoelectrochemical (PEC) water splitting is a viable and sustainable route for hydrogen generation from renewable resources. In PEC cells, the electrodes are coated with suitable semiconductor materials, which absorb the sunlight, generating charge carriers that are used to split water molecules into H2 and O2. CuFeO2 (or “Delafossite”) is a promising light absorbing material to drive the hydrogen evolution reaction (HER) thanks to its suitable band gap energy and its intrinsic p-type conductivity. However, its performances are strongly limited by the electron/hole pairs recombination within the film and the film/substrate interface. Aerosol Deposition (AD) may be employed to minimize charge recombination by spraying dense, sub-micrometer films, and by establishing a good back-contact interface. Moreover, AD offers several advantages over conventional coating methods, from high deposition rates to high coating purity. In the first part of this work, CuFeO2 powders were synthesized through a conventional mixed-oxide technique, milled down to adjust the particle size, and subsequently sprayed by AD. Both single impact tests and full coatings have been deposited on stainless steel substrates. The effect of particle size distribution, carrier gas, gas pressure and substrate temperature were investigated. The best set of spraying parameters were then tuned to obtain thin coatings (< 1 µm) on fluorine doped tin oxide (FTO) glass substrates for the final application. The second part of the PhD research was focused on 1) improving the PEC performances of the thin films and 2) stabilizing the material under operating conditions (chemical durability). The thin films were optimized by adjusting the layer thickness and by annealing under different conditions (time, temperature and atmosphere were varied). Several attempts to protect the coating from degradation and to stabilize the generated current density were made: AZO (Al:ZnO) + TiO2 protective films and Pt nanoparticles were deposited by Atomic Layer Deposition (ALD) and electrodeposition, respectively. The morphology of powder, single impact tests, thin film surfaces and the coatings' microstructure were investigated by Scanning Electron Microscopy (SEM). The phase composition of coatings was studied by X-ray diffraction and Raman spectroscopy before and after annealing. The optical properties of thin CuFeO2 films were analysed by UV-Vis spectroscopy, while the photoelectrochemical performances were estimated through Cyclic Voltammetry and Amperometry tests under simulated sunlight (AM1.5G). The results of this research showed that CuFeO2 photocathodes can be successfully manufactured by AD. Particle deformation and fragmentation phenomena were enhanced by using He as process gas at high gas pressure, resulting in dense coatings. Thin films were obtained by using particle filters (cyclones) and by using high traverse speeds during spraying. All CuFeO2 AD coatings absorbed high percentage of the visible light and generated high photocurrent densities when annealed in air. However, the increase in the PEC efficiency was also associated with the formation of CuO during annealing. Moreover, the generated photocurrent density decreased over time under testing conditions due to material degradation. Protective layers can slow down the degradation rate. Anyway, to maximize the process efficiency, their thickness and crystallinity should be adjusted, and a co-catalyst should be employed to extract the charge carriers.
La produzione di idrogeno verde è una delle vie più promettenti per raggiungere la neutralità climatica. Tra le varie tecnologie studiate a tale scopo, una delle più promettenti è la scissione fotocatalitica dell’acqua, attraverso la quale è possibile produrre idrogeno sfruttando la luce solare. In questo processo vengono solitamente utilizzate delle celle elettrochimiche in cui uno o entrambi gli elettrodi sono rivestiti con film sottili di materiale semiconduttore. Tali rivestimenti devono essere in grado di assorbire la luce solare e sfruttarla per generare portatori di carica impiegati per scindere le molecole di acqua in H2 e O2. La Delafossite è un ossido di ferro e rame (CuFeO2) attualmente studiato come fotocatodo per la reazione di evoluzione dell’H2 (HER), grazie alla sua elevata conducibilità e appropriata band gap. Le sue prestazioni, tuttavia, sono fortemente limitate perché le coppie elettrone/lacuna che vengono generate durante il processo tendono a ricombinarsi rapidamente sia all’interno del rivestimento che all’interfaccia con il substrato. Per ovviare a questo problema, è necessario produrre rivestimenti molto densi, sub-micrometrici, e privi di difetti. L’Aerosol Deposition (AD) è una tecnica di deposizione di rivestimenti che può garantire tali caratteristiche. Inoltre, rispetto ai processi convenzionali, l’AD offre il vantaggio di ottenere film ad alta purezza con tassi di deposizione elevati. Nella prima parte di questa ricerca, le polveri di CuFeO2 sono state sintetizzate, macinate, e depositate tramite AD su substrati in acciaio AISI 304. È stato studiato l’effetto di diversi parametri di processo: granulometria delle polveri, pressione e tipologia di gas e temperatura del substrato. A partire dal set di parametri più promettenti, il processo è stato ottimizzato per ottenere dei film sottili (< 1 µm). La seconda parte della ricerca è stata dedicata all’ottimizzazione ed alla stabilizzazione dei rivestimenti per l’applicazione finale. Per massimizzare le prestazioni dei film, sono stati effettuati dei trattamenti termici in diverse condizioni di tempo, temperatura e atmosfera, ed è stato variato lo spessore del film. Per stabilizzare il materiale durante le prove elettrochimiche, sono stati depositati dei layer protettivi di AZO (Al:ZnO) e TiO2 tramite Atomic Layer Deposition, e nanoparticelle di Pt per elettrodeposizione. La microscopia elettronica a scansione (SEM) è stata utilizzata per studiare sia la morfologia delle polveri e della superficie dei rivestimenti, sia la loro microstruttura. La composizione di polveri e film è stata determinata tramite diffrazione a raggi X e spettroscopia Raman. Le proprietà ottiche dei rivestimenti sono state studiate con la spettroscopia UV-Vis, mentre le relative performance elettrochimiche sono state analizzate con tecniche di voltammetria ciclica e amperometria. I risultati della ricerca di dottorato hanno dimostrato che è possibile depositare film densi e sottili di CuFeO2 tramite AD. In particolare, rivestimenti sufficientemente densi sono stati ottenuti utilizzando He come gas di processo ed elevate pressioni. Variando la velocità di spruzzatura sono stati depositati dei film sottili in grado di assorbire la luce visibile e di produrre corrente. Trattamenti termici in aria hanno portato ad un notevole incremento delle performance dei film ma, allo stesso tempo, hanno indotto la formazione di CuO. Inoltre, le performance dei film sono diminuite nel tempo, probabilmente a causa di una graduale degradazione del materiale. I layer protettivi hanno effettivamente rallentato il processo di degradazione del CuFeO2, ma il loro spessore e il loro grado di cristallinità devono essere ulteriormente ottimizzate per massimizzare i risultati.
Deposizione tramite Aerosol di rivestimenti fotocatalitici di CuFeO2 per la produzione di idrogeno verde / Alessia Bruera , 2024 May 15. 36. ciclo, Anno Accademico 2022/2023.
Deposizione tramite Aerosol di rivestimenti fotocatalitici di CuFeO2 per la produzione di idrogeno verde
BRUERA, ALESSIA
2024
Abstract
Photoelectrochemical (PEC) water splitting is a viable and sustainable route for hydrogen generation from renewable resources. In PEC cells, the electrodes are coated with suitable semiconductor materials, which absorb the sunlight, generating charge carriers that are used to split water molecules into H2 and O2. CuFeO2 (or “Delafossite”) is a promising light absorbing material to drive the hydrogen evolution reaction (HER) thanks to its suitable band gap energy and its intrinsic p-type conductivity. However, its performances are strongly limited by the electron/hole pairs recombination within the film and the film/substrate interface. Aerosol Deposition (AD) may be employed to minimize charge recombination by spraying dense, sub-micrometer films, and by establishing a good back-contact interface. Moreover, AD offers several advantages over conventional coating methods, from high deposition rates to high coating purity. In the first part of this work, CuFeO2 powders were synthesized through a conventional mixed-oxide technique, milled down to adjust the particle size, and subsequently sprayed by AD. Both single impact tests and full coatings have been deposited on stainless steel substrates. The effect of particle size distribution, carrier gas, gas pressure and substrate temperature were investigated. The best set of spraying parameters were then tuned to obtain thin coatings (< 1 µm) on fluorine doped tin oxide (FTO) glass substrates for the final application. The second part of the PhD research was focused on 1) improving the PEC performances of the thin films and 2) stabilizing the material under operating conditions (chemical durability). The thin films were optimized by adjusting the layer thickness and by annealing under different conditions (time, temperature and atmosphere were varied). Several attempts to protect the coating from degradation and to stabilize the generated current density were made: AZO (Al:ZnO) + TiO2 protective films and Pt nanoparticles were deposited by Atomic Layer Deposition (ALD) and electrodeposition, respectively. The morphology of powder, single impact tests, thin film surfaces and the coatings' microstructure were investigated by Scanning Electron Microscopy (SEM). The phase composition of coatings was studied by X-ray diffraction and Raman spectroscopy before and after annealing. The optical properties of thin CuFeO2 films were analysed by UV-Vis spectroscopy, while the photoelectrochemical performances were estimated through Cyclic Voltammetry and Amperometry tests under simulated sunlight (AM1.5G). The results of this research showed that CuFeO2 photocathodes can be successfully manufactured by AD. Particle deformation and fragmentation phenomena were enhanced by using He as process gas at high gas pressure, resulting in dense coatings. Thin films were obtained by using particle filters (cyclones) and by using high traverse speeds during spraying. All CuFeO2 AD coatings absorbed high percentage of the visible light and generated high photocurrent densities when annealed in air. However, the increase in the PEC efficiency was also associated with the formation of CuO during annealing. Moreover, the generated photocurrent density decreased over time under testing conditions due to material degradation. Protective layers can slow down the degradation rate. Anyway, to maximize the process efficiency, their thickness and crystallinity should be adjusted, and a co-catalyst should be employed to extract the charge carriers.File | Dimensione | Formato | |
---|---|---|---|
PhD thesis_Bruera Alessia.pdf
embargo fino al 15/05/2027
Descrizione: Tesi definitiva_Bruera Alessia
Tipologia:
Tesi di dottorato
Dimensione
16.59 MB
Formato
Adobe PDF
|
16.59 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris