We present a theoretical study of the formation of self-trapped excitons (STEs) and the associated broadband emission in metal-halide perovskites Cs4SnBr6 and Cs2AgInCl6, using time-dependent density functional theory (TDDFT) with the dielectric-dependent hybrid (DDH) functional. Our approach allows for an accurate description of the excitonic effect and geometry relaxation in the electronic excited states and yields optical gap, STE emission energy, and emission spectra in reasonable agreement with experiments. We point out the significance of considering geometry relaxations in the electronic excited state by showing that the exciton-phonon coupling computed in the ground-state atomic geometry is insufficient to describe the physical properties of STEs. Overall, we find that TDDFT with the DDH hybrid functional is a suitable approach for the study of the formation of STEs in perovskite and provides insights for designing metal-halide perovskites with tailored emission properties.

Self-Trapped Excitons in Metal-Halide Perovskites Investigated by Time-Dependent Density Functional Theory / Jin, Y.; Rusishvili, M.; Govoni, M.; Galli, G.. - In: THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS. - ISSN 1948-7185. - 15:12(2024), pp. 3229-3237. [10.1021/acs.jpclett.4c00209]

Self-Trapped Excitons in Metal-Halide Perovskites Investigated by Time-Dependent Density Functional Theory

Govoni M.
;
2024

Abstract

We present a theoretical study of the formation of self-trapped excitons (STEs) and the associated broadband emission in metal-halide perovskites Cs4SnBr6 and Cs2AgInCl6, using time-dependent density functional theory (TDDFT) with the dielectric-dependent hybrid (DDH) functional. Our approach allows for an accurate description of the excitonic effect and geometry relaxation in the electronic excited states and yields optical gap, STE emission energy, and emission spectra in reasonable agreement with experiments. We point out the significance of considering geometry relaxations in the electronic excited state by showing that the exciton-phonon coupling computed in the ground-state atomic geometry is insufficient to describe the physical properties of STEs. Overall, we find that TDDFT with the DDH hybrid functional is a suitable approach for the study of the formation of STEs in perovskite and provides insights for designing metal-halide perovskites with tailored emission properties.
2024
15
12
3229
3237
Self-Trapped Excitons in Metal-Halide Perovskites Investigated by Time-Dependent Density Functional Theory / Jin, Y.; Rusishvili, M.; Govoni, M.; Galli, G.. - In: THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS. - ISSN 1948-7185. - 15:12(2024), pp. 3229-3237. [10.1021/acs.jpclett.4c00209]
Jin, Y.; Rusishvili, M.; Govoni, M.; Galli, G.
File in questo prodotto:
File Dimensione Formato  
2404.05837v1.pdf

embargo fino al 08/04/2025

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1338769
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact