The galaxy Malin 1 contains the largest stellar disc known but the formation mechanism of this structure has been elusive. In this paper, we report a Malin 1 analogue in the 100 Mpc IllustrisTNG simulation and describe its formation history. At redshift zero, this massive galaxy, having a maximum circular velocity V_max of 430 km/s, contains a 100 kpc gas/stellar disc with morphology similar to Malin 1. The simulated galaxy reproduces well many observed features of Malin 1's vast disc, including its stellar ages, metallicities, and gas rotation curve. We trace the extended disc back in time and find that a large fraction of the cold gas at redshift zero originated from the cooling of hot halo gas, triggered by the merger of a pair of intruding galaxies. Our finding provides a novel way to form large galaxy discs as extreme as Malin 1 within the current galaxy formation framework.

Formation of a Malin 1 analogue in IllustrisTNG by stimulated accretion / Zhu, Qirong; Xu, Dandan; Gaspari, Massimo; Rodriguez-Gomez, Vicente; Nelson, Dylan; Vogelsberger, Mark; Torrey, Paul; Pillepich, Annalisa; Zjupa, Jolanta; Weinberger, Rainer; Marinacci, Federico; Pakmor, Rüdiger; Genel, Shy; Li, Yuexing; Springel, Volker; Hernquist, Lars. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 480:1(2018), pp. L18-L22. [10.1093/mnrasl/sly111]

Formation of a Malin 1 analogue in IllustrisTNG by stimulated accretion

GASPARI, MASSIMO;
2018

Abstract

The galaxy Malin 1 contains the largest stellar disc known but the formation mechanism of this structure has been elusive. In this paper, we report a Malin 1 analogue in the 100 Mpc IllustrisTNG simulation and describe its formation history. At redshift zero, this massive galaxy, having a maximum circular velocity V_max of 430 km/s, contains a 100 kpc gas/stellar disc with morphology similar to Malin 1. The simulated galaxy reproduces well many observed features of Malin 1's vast disc, including its stellar ages, metallicities, and gas rotation curve. We trace the extended disc back in time and find that a large fraction of the cold gas at redshift zero originated from the cooling of hot halo gas, triggered by the merger of a pair of intruding galaxies. Our finding provides a novel way to form large galaxy discs as extreme as Malin 1 within the current galaxy formation framework.
2018
480
1
L18
L22
Formation of a Malin 1 analogue in IllustrisTNG by stimulated accretion / Zhu, Qirong; Xu, Dandan; Gaspari, Massimo; Rodriguez-Gomez, Vicente; Nelson, Dylan; Vogelsberger, Mark; Torrey, Paul; Pillepich, Annalisa; Zjupa, Jolanta; Weinberger, Rainer; Marinacci, Federico; Pakmor, Rüdiger; Genel, Shy; Li, Yuexing; Springel, Volker; Hernquist, Lars. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 480:1(2018), pp. L18-L22. [10.1093/mnrasl/sly111]
Zhu, Qirong; Xu, Dandan; Gaspari, Massimo; Rodriguez-Gomez, Vicente; Nelson, Dylan; Vogelsberger, Mark; Torrey, Paul; Pillepich, Annalisa; Zjupa, Jola...espandi
File in questo prodotto:
File Dimensione Formato  
sly111.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1338402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact