We simulate decaying turbulence in a homogeneous pair plasma using a three-dimensional electromagnetic particle-in-cell method. A uniform background magnetic field permeates the plasma such that the magnetic pressure is three times larger than the thermal pressure and the turbulence is generated by counter-propagating shear Alfvén waves. The energy predominately cascades transverse to the background magnetic field, rendering the turbulence anisotropic at smaller scales. We simultaneously move several ion species of varying charge to mass ratios in our simulation and show that the particles of smaller charge to mass ratios are heated and accelerated to non-thermal energies at a faster rate. This is in accordance with the enhancement of heavy ions and a non-thermal tail in their energy spectrum observed in the impulsive solar flares. We further show that the heavy ions are energized mostly in the direction perpendicular to the background magnetic field, with a rate consistent with our analytical estimate of the rate of heating due to cyclotron resonance with the Alfvén waves, of which a large fraction is due to obliquely propagating waves.
Preferential Heating and Acceleration of Heavy Ions in Impulsive Solar Flares / Kumar, Rahul; Eichler, David; Gaspari, Massimo; Spitkovsky, Anatoly. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - 835:2(2017), p. 295. [10.3847/1538-4357/835/2/295]
Preferential Heating and Acceleration of Heavy Ions in Impulsive Solar Flares
GASPARI, MASSIMO;
2017
Abstract
We simulate decaying turbulence in a homogeneous pair plasma using a three-dimensional electromagnetic particle-in-cell method. A uniform background magnetic field permeates the plasma such that the magnetic pressure is three times larger than the thermal pressure and the turbulence is generated by counter-propagating shear Alfvén waves. The energy predominately cascades transverse to the background magnetic field, rendering the turbulence anisotropic at smaller scales. We simultaneously move several ion species of varying charge to mass ratios in our simulation and show that the particles of smaller charge to mass ratios are heated and accelerated to non-thermal energies at a faster rate. This is in accordance with the enhancement of heavy ions and a non-thermal tail in their energy spectrum observed in the impulsive solar flares. We further show that the heavy ions are energized mostly in the direction perpendicular to the background magnetic field, with a rate consistent with our analytical estimate of the rate of heating due to cyclotron resonance with the Alfvén waves, of which a large fraction is due to obliquely propagating waves.File | Dimensione | Formato | |
---|---|---|---|
Kumar_2017_ApJ_835_295.pdf
Accesso riservato
Dimensione
500.8 kB
Formato
Adobe PDF
|
500.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris