We investigate the cold and warm gas content, kinematics, and spatial distribution of six local massive elliptical galaxies to probe the origin of the multiphase gas in their atmospheres. We report new observations, including Stratospheric Observatory for Infrared Astronomy [C II], Atacama Large Millimeter/submillimeter Array CO, Multi Unit Spectroscopic Explorer (MUSE) Hα+[N II], and Very Large Array (VLA) radio observations. These are complemented by a large suite of multiwavelength archival data sets, including thermodynamical properties of the hot gas and radio jets, which are leveraged to investigate the role of active galactic nucleus (AGN) feeding/feedback in regulating the multiphase gas content. Our galactic sample shows a significant diversity in cool gas content, spanning filamentary and rotating structures. In our noncentral galaxies, the distribution of such gas is often concentrated, at variance with the more extended features observed in central galaxies. Misalignment between the multiphase gas and stars suggest that stellar mass loss is not the primary driver. A fraction of the cool gas might be acquired via galaxy interactions, but we do not find quantitative evidence of mergers in most of our systems. Instead, key evidence supports the origin via condensation out of the diffuse halo. Comparing with chaotic cold accretion (CCA) simulations, we find that our cool gas-free galaxies are likely in the overheated phase of the self-regulated AGN cycle, while for our galaxies with cool gas, the k-plot and AGN power correlation corroborate the phase of CCA feeding in which the condensation rain is triggering more vigorous AGN heating. The related C-ratio further shows that central/noncentral galaxies are expected to generate an extended/inner rain, consistent with our sample.

Probing Multiphase Gas in Local Massive Elliptical Galaxies via Multiwavelength Observations / Temi, P.; Gaspari, Massimo; Brighenti, F.; Werner, N.; Grossova, R.; Gitti, Myriam; Sun, M.; Amblard, A.; Simionescu, A.. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - 928:2(2022), p. 150. [10.3847/1538-4357/ac5036]

Probing Multiphase Gas in Local Massive Elliptical Galaxies via Multiwavelength Observations

GASPARI, MASSIMO;
2022

Abstract

We investigate the cold and warm gas content, kinematics, and spatial distribution of six local massive elliptical galaxies to probe the origin of the multiphase gas in their atmospheres. We report new observations, including Stratospheric Observatory for Infrared Astronomy [C II], Atacama Large Millimeter/submillimeter Array CO, Multi Unit Spectroscopic Explorer (MUSE) Hα+[N II], and Very Large Array (VLA) radio observations. These are complemented by a large suite of multiwavelength archival data sets, including thermodynamical properties of the hot gas and radio jets, which are leveraged to investigate the role of active galactic nucleus (AGN) feeding/feedback in regulating the multiphase gas content. Our galactic sample shows a significant diversity in cool gas content, spanning filamentary and rotating structures. In our noncentral galaxies, the distribution of such gas is often concentrated, at variance with the more extended features observed in central galaxies. Misalignment between the multiphase gas and stars suggest that stellar mass loss is not the primary driver. A fraction of the cool gas might be acquired via galaxy interactions, but we do not find quantitative evidence of mergers in most of our systems. Instead, key evidence supports the origin via condensation out of the diffuse halo. Comparing with chaotic cold accretion (CCA) simulations, we find that our cool gas-free galaxies are likely in the overheated phase of the self-regulated AGN cycle, while for our galaxies with cool gas, the k-plot and AGN power correlation corroborate the phase of CCA feeding in which the condensation rain is triggering more vigorous AGN heating. The related C-ratio further shows that central/noncentral galaxies are expected to generate an extended/inner rain, consistent with our sample.
2022
928
2
150
Probing Multiphase Gas in Local Massive Elliptical Galaxies via Multiwavelength Observations / Temi, P.; Gaspari, Massimo; Brighenti, F.; Werner, N.; Grossova, R.; Gitti, Myriam; Sun, M.; Amblard, A.; Simionescu, A.. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - 928:2(2022), p. 150. [10.3847/1538-4357/ac5036]
Temi, P.; Gaspari, Massimo; Brighenti, F.; Werner, N.; Grossova, R.; Gitti, Myriam; Sun, M.; Amblard, A.; Simionescu, A.
File in questo prodotto:
File Dimensione Formato  
Temi_2022_ApJ_928_150.pdf

Accesso riservato

Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1338327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact