The growing demand for electric vehicles exacerbates concerns over the environmental implications of lithium-ion battery waste, which poses risks to both ecological systems and public health. While remanufacturing has been acknowledged as a viable, sustainable pathway for mitigating these issues, existing literature lacks a comprehensive investigation into the role of Industry 5.0 technologies in optimising this process. To achieve this goal, this study compares and evaluates the potential of different Industry 5.0 technologies and approaches to support the remanufacturing process of lithium-ion batteries. Specifically, we apply the AHP-PROMETHEE method to identify the most critical and influential Industry 5.0 prospects that should be prioritised for development and implementation. The novelty of our approach lies in the identification of critical Industry 5.0 imperatives that can enable efficient and effective remanufacturing processes. The analysis is supported by a comprehensive review of the relevant literature. The results of our study provide important implications for policymakers, battery manufacturers, and remanufacturing companies. By prioritising key Industry 5.0 technologies like digital twins, the Internet of Everything, and blockchain, this study shows that carmakers can significantly improve efficiency and sustainability in battery remanufacturing. This paper contributes to the emerging research on the integration of Industry 5.0 technologies in the remanufacturing process of lithium-ion batteries. Our next step is to explore the potential of the identified technologies in real-life applications and to evaluate their impact on the sustainability and efficiency of the remanufacturing process of lithium-ion batteries.
Exploring Industry 5.0 for Remanufacturing of Lithium-Ion Batteries in Electric Vehicles / Neri, Alessandro; Butturi, Maria Angela; da Silva, Leandro Tomasin; Lolli, Francesco; Gamberini, Rita; Sellitto, Miguel Afonso. - (2024), pp. 53-64. (Intervento presentato al convegno 7th International Workshop on Autonomous Remanufacturing, IWAR 2023 tenutosi a Caserta, Italy nel 18-19 October 2023) [10.1007/978-3-031-52649-7_5].
Exploring Industry 5.0 for Remanufacturing of Lithium-Ion Batteries in Electric Vehicles
Neri, Alessandro;Butturi, Maria Angela;Lolli, Francesco;Gamberini, Rita;Sellitto, Miguel Afonso
2024
Abstract
The growing demand for electric vehicles exacerbates concerns over the environmental implications of lithium-ion battery waste, which poses risks to both ecological systems and public health. While remanufacturing has been acknowledged as a viable, sustainable pathway for mitigating these issues, existing literature lacks a comprehensive investigation into the role of Industry 5.0 technologies in optimising this process. To achieve this goal, this study compares and evaluates the potential of different Industry 5.0 technologies and approaches to support the remanufacturing process of lithium-ion batteries. Specifically, we apply the AHP-PROMETHEE method to identify the most critical and influential Industry 5.0 prospects that should be prioritised for development and implementation. The novelty of our approach lies in the identification of critical Industry 5.0 imperatives that can enable efficient and effective remanufacturing processes. The analysis is supported by a comprehensive review of the relevant literature. The results of our study provide important implications for policymakers, battery manufacturers, and remanufacturing companies. By prioritising key Industry 5.0 technologies like digital twins, the Internet of Everything, and blockchain, this study shows that carmakers can significantly improve efficiency and sustainability in battery remanufacturing. This paper contributes to the emerging research on the integration of Industry 5.0 technologies in the remanufacturing process of lithium-ion batteries. Our next step is to explore the potential of the identified technologies in real-life applications and to evaluate their impact on the sustainability and efficiency of the remanufacturing process of lithium-ion batteries.File | Dimensione | Formato | |
---|---|---|---|
Preprint_IWAR2023.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
273.45 kB
Formato
Adobe PDF
|
273.45 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris