Human attention modelling has proven, in recent years, to be particularly useful not only for understanding the cognitive processes underlying visual exploration, but also for providing support to artificial intelligence models that aim to solve problems in various domains, including image and video processing, vision-and-language applications, and language modelling. This survey offers a reasoned overview of recent efforts to integrate human attention mechanisms into contemporary deep learning models and discusses future research directions and challenges.

Trends, Applications, and Challenges in Human Attention Modelling / Cartella, Giuseppe; Cornia, Marcella; Cuculo, Vittorio; D'Amelio, Alessandro; Zanca, Dario; Boccignone, Giuseppe; Cucchiara, Rita. - In: IJCAI. - ISSN 1045-0823. - (2024), pp. 7971-7979. (Intervento presentato al convegno 33rd International Joint Conference on Artificial Intelligence, IJCAI 2024 tenutosi a Jeju, South Korea nel 2024) [10.24963/ijcai.2024/882].

Trends, Applications, and Challenges in Human Attention Modelling

Giuseppe Cartella
;
Marcella Cornia;Vittorio Cuculo;Rita Cucchiara
2024

Abstract

Human attention modelling has proven, in recent years, to be particularly useful not only for understanding the cognitive processes underlying visual exploration, but also for providing support to artificial intelligence models that aim to solve problems in various domains, including image and video processing, vision-and-language applications, and language modelling. This survey offers a reasoned overview of recent efforts to integrate human attention mechanisms into contemporary deep learning models and discusses future research directions and challenges.
2024
ago-2024
33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
Jeju, South Korea
2024
7971
7979
Cartella, Giuseppe; Cornia, Marcella; Cuculo, Vittorio; D'Amelio, Alessandro; Zanca, Dario; Boccignone, Giuseppe; Cucchiara, Rita
Trends, Applications, and Challenges in Human Attention Modelling / Cartella, Giuseppe; Cornia, Marcella; Cuculo, Vittorio; D'Amelio, Alessandro; Zanca, Dario; Boccignone, Giuseppe; Cucchiara, Rita. - In: IJCAI. - ISSN 1045-0823. - (2024), pp. 7971-7979. (Intervento presentato al convegno 33rd International Joint Conference on Artificial Intelligence, IJCAI 2024 tenutosi a Jeju, South Korea nel 2024) [10.24963/ijcai.2024/882].
File in questo prodotto:
File Dimensione Formato  
0882.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 536.4 kB
Formato Adobe PDF
536.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1337046
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact