The increasing turbine inlet temperatures in modern gas turbines have raised concerns about the durability (thermal cycling) and the corrosion resistance of ceramic Thermal Barrier Coatings (TBCs) to molten silicate deposits, commonly known as "CMAS" due to their main constituents (CaO-MgO-Al2O3-SiO2). The objective of this study was to investigate the combined influence of powder morphology and chemical composition on the CMAS and thermal cycling resistance of ceramic monolayer and bi-layer coatings deposited through Atmospheric Plasma Spraying (APS). Three powder morphologies of Yttria-Stabilized Zirconia (YSZ) were examined: porous Agglomerated and Sintered (A&S) granules; Hollow Spherical (HOSP) powders; and dense, irregular Fused and Crushed (F&C) particles. Monolayer coatings were made of ZrO2 stabilized with 7-8 wt.% Y2O3 (7-8YSZ) with both porous and dense-vertically cracked (DVC) microstructures. Two types of bi-layer coatings were studied. The first type consisted of a bottom layer of porous standard 7-8YSZ and a top layer composed of a porous, high-yttrium ZrO2-55wt.% Y2O3 layer. Both layers were obtained using all three powder types (A&S, HOSP, or F&C). In this system the main purpose of the ZrO2-55wt.% Y2O3 top layer was to enhance the resistance to "CMAS" melts. Because of its cubic structure, ZrO2-55wt.% Y2O3 is more brittle than 7-8YSZ; therefore, in order to minimize the detrimental effects on thermal cycling resistance, the bi-layer systems were designed with different ratios between the individual layer thicknesses and/or different total thickness. The second type of bi-layer TBC consisted of an inner layer made of standard 7-8YSZ to mitigate thermomechanical stress due to its favorable fracture toughness, and a top layer composed of ZrO2-20wt.% Y2O3, the main purpose of which is, in this case, to reduce the thermal conductivity of the TBC. Agglomerated powders were employed both for bottom and top layer of their respective compositions, resulting in systems with either porous or Dense-Vertically Cracked (DVC) microstructures for both layers. Additionally, the use of an extra "flash" third layer made of gadolinium zirconate in dedicated systems was explored to confer "CMAS" resistance. FEG-SEM, EDX, and micro-Raman analyses, were conducted to investigate microstructure and chemical composition. Nanoindentation high-speed mapping and pillar splitting test were performed to assess the coatings' performance and evaluate the mechanical behavior. Corrosion by molten CMAS, Thermal Cycling Fatigue (TCF) resistance and tensile adhesion were characterized on all samples.

Le crescenti temperature d'ingresso dei gas nelle moderne turbine ad uso industriale (Industrial Gas Turbine, IGT) e aviation richiedono che i rivestimenti ceramici (Thermal Barrier Coatings, TBCs) abbiano un’elevata resistenza al ciclaggio termico e alla corrosione causata dai depositi di silicati fusi, comunemente noti come "CMAS", in quanto costituiti principalmente da ossidi come CaO, MgO, Al2O3 e SiO2. L'obiettivo di questo studio è stato quello d’investigare l'influenza combinata della morfologia della polvere e della composizione chimica sulla resistenza al CMAS ed al ciclaggio termico di rivestimenti ceramici monostrato e multistrato creati attraverso la tecnica di deposizione APS (Air Plasma Spraying). Innanzitutto, sono stati esaminati rivestimenti monostrato in ZrO2 + 7-8 wt.% Y2O3 (7-8YSZ) con microstrutture sia porose che dense (Dense-Vertically Cracked, DVC), ottenuti a partire da polveri con tre morfologie differenti: Agglomerated and Sintered (A&S), Hollow-Spherical (HOSP) e Fused & Crushed (F&C). Sono poi stati studiati due diversi tipi di rivestimenti multistrato: una prima serie di rivestimenti erano costituiti da uno strato inferiore di 7-8YSZ standard poroso e da uno strato superiore con un elevato contenuto di ittrio (ZrO2-55wt.% Y2O3), entrambi ottenuti utilizzando tutti e tre i tipi di polvere (A&S, HOSP o F&C). Lo scopo principale dello strato di ZrO2-55wt.% Y2O3 è stato quello di aumentare la resistenza chimica al CMAS e, poiché la maggiore fragilità della struttura cubica della composizione ZrO2-55wt.% Y2O3 rispetto alla composizione 7-8YSZ con struttura tetragonale potrebbe peggiorare la resistenza a ciclaggio termico del sistema, sono stati depositati sistemi multistrato con diverse proporzioni tra lo spessore dei singoli strati e/o diversi spessori totali per ottimizzarne l’architettura. Il secondo tipo di TBC multistrato è stato costituito da un primo strato interno fatto di 7-8YSZ standard, per mitigare lo stress termomeccanico grazie alla sua favorevole tenacità alla frattura, ed un secondo strato superiore composto da ZrO2-20wt.% Y2O3, con lo scopo principale di ridurre la conducibilità termica del sistema. In questo caso, sia gli strati inferiori, sia quelli superiori sono stati ottenuti utilizzando polveri agglomerate delle rispettive composizioni, ottenendo sistemi con microstrutture sia porose che DVC per entrambi gli strati. Inoltre, è stata esplorato, in alcuni di questi sistemi, anche l'uso di un terzo strato "flash" aggiuntivo costituito da zirconato di gadolinio per conferire resistenza a CMAS. Sono state condotte caratterizzazioni mediante FEG-SEM, EDX e micro-Raman per investigare microstruttura e composizione chimica. Test di nano indentazione high-speed mapping e pillar splitting sono stati eseguiti per valutare le prestazioni dei rivestimenti e il loro comportamento meccanico. La corrosione da attacco CMAS, la resistenza a fatica da ciclaggio termico (Thermal Cycling Fatigue, TCF) e l'adesione a trazione sono state analizzate su tutti i campioni.

Effetto della morfologia e della composizione chimica di polveri in YSZ sulle prestazioni di barriere termiche per applicazioni industriali / Simone Bursich , 2024 Mar 27. 36. ciclo, Anno Accademico 2022/2023.

Effetto della morfologia e della composizione chimica di polveri in YSZ sulle prestazioni di barriere termiche per applicazioni industriali.

BURSICH, SIMONE
2024

Abstract

The increasing turbine inlet temperatures in modern gas turbines have raised concerns about the durability (thermal cycling) and the corrosion resistance of ceramic Thermal Barrier Coatings (TBCs) to molten silicate deposits, commonly known as "CMAS" due to their main constituents (CaO-MgO-Al2O3-SiO2). The objective of this study was to investigate the combined influence of powder morphology and chemical composition on the CMAS and thermal cycling resistance of ceramic monolayer and bi-layer coatings deposited through Atmospheric Plasma Spraying (APS). Three powder morphologies of Yttria-Stabilized Zirconia (YSZ) were examined: porous Agglomerated and Sintered (A&S) granules; Hollow Spherical (HOSP) powders; and dense, irregular Fused and Crushed (F&C) particles. Monolayer coatings were made of ZrO2 stabilized with 7-8 wt.% Y2O3 (7-8YSZ) with both porous and dense-vertically cracked (DVC) microstructures. Two types of bi-layer coatings were studied. The first type consisted of a bottom layer of porous standard 7-8YSZ and a top layer composed of a porous, high-yttrium ZrO2-55wt.% Y2O3 layer. Both layers were obtained using all three powder types (A&S, HOSP, or F&C). In this system the main purpose of the ZrO2-55wt.% Y2O3 top layer was to enhance the resistance to "CMAS" melts. Because of its cubic structure, ZrO2-55wt.% Y2O3 is more brittle than 7-8YSZ; therefore, in order to minimize the detrimental effects on thermal cycling resistance, the bi-layer systems were designed with different ratios between the individual layer thicknesses and/or different total thickness. The second type of bi-layer TBC consisted of an inner layer made of standard 7-8YSZ to mitigate thermomechanical stress due to its favorable fracture toughness, and a top layer composed of ZrO2-20wt.% Y2O3, the main purpose of which is, in this case, to reduce the thermal conductivity of the TBC. Agglomerated powders were employed both for bottom and top layer of their respective compositions, resulting in systems with either porous or Dense-Vertically Cracked (DVC) microstructures for both layers. Additionally, the use of an extra "flash" third layer made of gadolinium zirconate in dedicated systems was explored to confer "CMAS" resistance. FEG-SEM, EDX, and micro-Raman analyses, were conducted to investigate microstructure and chemical composition. Nanoindentation high-speed mapping and pillar splitting test were performed to assess the coatings' performance and evaluate the mechanical behavior. Corrosion by molten CMAS, Thermal Cycling Fatigue (TCF) resistance and tensile adhesion were characterized on all samples.
Effect of YSZ powder morphology and chemical composition on the coating performance of industrial Thermal Barrier Coatings (TBCs)
27-mar-2024
LUSVARGHI, Luca
BOLELLI, Giovanni
File in questo prodotto:
File Dimensione Formato  
PhD_Bursich_2024.pdf

embargo fino al 27/03/2027

Descrizione: Tesi definitiva Bursich Simone
Tipologia: Tesi di dottorato
Dimensione 42.28 MB
Formato Adobe PDF
42.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1336807
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact