Microfluidics is the scientific sector that deals with fluids that flow in circuits with micrometric sections and with such low speeds, and consequently Reynolds numbers, as to always ensure a laminar flow. These characteristics make microfluidic circuits ideal for handling small quantities of fluids in sensors and devices, especially in the biomedical sector. Thus, we have micro-analyzers or micro-process devices (lab-on-chip), organ simulators (organ-on-chip), up to simulators of multiple human functions (human-on-chip). In the research sector, the most used technology to create microfluidic circuits is photolithography which allows the creation of negative molds with elements of micrometric dimensions. By pouring PDMS, a silicone resin, into the molds (replica molding) and hot curing it, complex microfluidic circuits with compact dimensions are created. The circuits are sealed by plasma bonding of a layer of glass. The aim of this research was twofold, on the one hand to design and implement a microfluidic device to analyze the shear-stress influence of the culture fluid flow on bone cell proliferation, on the other hand to design and apply a general purpose technology to make microfluidic circuits more quickly and at lower costs than traditional technology. For several years, microfluidic circuits have been tested for the analysis of bone cells, but these circuits were normally made up of a constant section proliferation channel with only the height of micrometric dimensions, a 2D representation of what happens in the bones, resulting in simple in vitro experiments where the culture fluid was circulated. Instead, this research started using a cellular scaffold of hydroxyapatite, the mineral component of bone, derived from natural biological structures, thus creating an environment like that in vivo. The complex and varied structure of the scaffold channels, the true microfluidic 3D circuit, has inherent the difficulty of characterizing the various samples, naturally one different from the other, solved with modeling of the geometry of the channels starting from optical scans, with experimental tests and with statistical averages on groups of homogeneous samples. The results of the experiments, performed on a broad spectrum of flows, were congruent with the results of previous research, thus validating the modeling technique for the characterization of the samples. The second part of the research started from the consideration that the realization of microfluidic circuits using photolithographic molds and PDMS involves many steps, long production times and high costs of the materials used. Instead, this research started from the consolidated technology of ablation through laser pulses concentrated in picoseconds to create microfluidic circuits on a layer of glass. The circuits are sealed by plasma bonding of a layer of silicone. Standard glass samples were created, and the quality of the channel geometry was validated by confocal microscope scanning. The use of commercial silicones, already available in sheets and with extremely low costs, has been validated by creating a pressure test methodology and using it on many samples with different plasma bonding parameters to determine their best combination. A different but equally effective manufacturing technology for microfluidic devices was thus validated.

La microfluidica è il settore scientifico che si occupa dei fluidi che scorrono in circuiti con sezioni micrometriche e con velocità talmente basse, e di conseguenza numeri di Reynolds, tali da assicurare sempre un flusso laminare. Queste caratteristiche rendono i circuiti microfluidici ideali per gestire piccole quantità di fluidi in sensori e dispositivi, specialmente nel settore biomedicale. Si hanno così i micro-analizzatori o i micro-dispositivi di processo (lab-on-chip), i simulatori di organi (organ-on-chip), fino ai simulatori di più funzioni umane (human-on-chip). Nel settore della ricerca, la tecnologia più utilizzata per realizzare circuiti microfluidici è la fotolitografia che permette di realizzare stampi in negativo con elementi di dimensioni micrometriche. Versando negli stampi (replica molding) del PDMS, una resina siliconica, e facendolo polimerizzare a caldo si realizzano circuiti microfluidici complessi con dimensioni compatte. I circuiti vengono poi sigillati con vetrini incollati tramite attivazione al plasma (plasma bonding). Lo scopo di questa ricerca è stato duplice, da un lato progettare e realizzare un dispositivo microfluidico per analizzare l’influenza (shear-stress) che ha il flusso di liquido di cultura sulla proliferazione cellulare ossea, dall’altro progettare e applicare una tecnologia general purpose per realizzare circuiti microfluidici più rapidamente e a costi più bassi rispetto alla tecnologia tradizionale. Da diversi anni sono stati sperimentati dei circuiti microfluidici per l’analisi delle cellule ossee, ma tali circuiti erano normalmente costituiti da un canale di proliferazione a sezione costante con solo l’altezza di dimensioni micrometriche, rappresentazione 2D di quello che avviene nelle ossa, risultando dei semplici esperimenti in vitro dove veniva fatto circolare il liquido di coltura. Questa ricerca è invece partita utilizzando come supporto cellulare (scaffold) una matrice di idrossiapatite, il componente minerale delle ossa, ricavato da strutture biologiche naturali e creando così un ambiente simile a quello in vivo. La struttura complessa e varia dei canali del supporto, il vero circuito 3D microfluidico, ha insita la difficoltà di caratterizzare i vari campioni, naturalmente uno diverso dall’altro, risolta con modellizzazioni della geometria dei canali partendo da scansioni ottiche, con prove sperimentali e con medie statistiche su gruppi di campioni omogenei. I risultati degli esperimenti, eseguiti su un ampio spettro di flussi, sono stati congruenti con i risultati delle ricerche precedenti, validando così la tecnica di modellizzazione per la caratterizzazione dei campioni. La seconda parte della ricerca è partita dalla considerazione che la realizzazione di circuiti microfluidici tramite stampi fotolitografici e PDMS comporta molti passaggi, tempi lunghi di realizzazione e costi elevati dei materiali impiegati. Questa ricerca è invece partita dalla consolidata tecnologia di ablazione tramite impulsi laser concentrati in picosecondi per realizzare circuiti microfluidici su provini in vetro. I circuiti vengono poi sigillati con uno strato di silicone incollato tramite attivazione al plasma. Sono stati creati dei campioni standard in vetro e la qualità della geometria dei canali è stata validata mediante microscopio confocale. È stato validato l’utilizzo di siliconi commerciali, già disponibili in fogli e con costi estremamente ridotti, creando una metodologia di prova in pressione e utilizzandola su un largo numero di campioni incollati al plasma con parametri di attivazione differenti per determinare la loro migliore combinazione. È stata così validata una differente ma altrettanto efficace tecnologia realizzativa per dispositivi microfluidici.

Tecnologie ed Applicazioni della Microfluidica per la Ricerca Scientifica / Claudio Ongaro , 2024 Mar 27. 35. ciclo, Anno Accademico 2021/2022.

Tecnologie ed Applicazioni della Microfluidica per la Ricerca Scientifica

ONGARO, CLAUDIO
2024

Abstract

Microfluidics is the scientific sector that deals with fluids that flow in circuits with micrometric sections and with such low speeds, and consequently Reynolds numbers, as to always ensure a laminar flow. These characteristics make microfluidic circuits ideal for handling small quantities of fluids in sensors and devices, especially in the biomedical sector. Thus, we have micro-analyzers or micro-process devices (lab-on-chip), organ simulators (organ-on-chip), up to simulators of multiple human functions (human-on-chip). In the research sector, the most used technology to create microfluidic circuits is photolithography which allows the creation of negative molds with elements of micrometric dimensions. By pouring PDMS, a silicone resin, into the molds (replica molding) and hot curing it, complex microfluidic circuits with compact dimensions are created. The circuits are sealed by plasma bonding of a layer of glass. The aim of this research was twofold, on the one hand to design and implement a microfluidic device to analyze the shear-stress influence of the culture fluid flow on bone cell proliferation, on the other hand to design and apply a general purpose technology to make microfluidic circuits more quickly and at lower costs than traditional technology. For several years, microfluidic circuits have been tested for the analysis of bone cells, but these circuits were normally made up of a constant section proliferation channel with only the height of micrometric dimensions, a 2D representation of what happens in the bones, resulting in simple in vitro experiments where the culture fluid was circulated. Instead, this research started using a cellular scaffold of hydroxyapatite, the mineral component of bone, derived from natural biological structures, thus creating an environment like that in vivo. The complex and varied structure of the scaffold channels, the true microfluidic 3D circuit, has inherent the difficulty of characterizing the various samples, naturally one different from the other, solved with modeling of the geometry of the channels starting from optical scans, with experimental tests and with statistical averages on groups of homogeneous samples. The results of the experiments, performed on a broad spectrum of flows, were congruent with the results of previous research, thus validating the modeling technique for the characterization of the samples. The second part of the research started from the consideration that the realization of microfluidic circuits using photolithographic molds and PDMS involves many steps, long production times and high costs of the materials used. Instead, this research started from the consolidated technology of ablation through laser pulses concentrated in picoseconds to create microfluidic circuits on a layer of glass. The circuits are sealed by plasma bonding of a layer of silicone. Standard glass samples were created, and the quality of the channel geometry was validated by confocal microscope scanning. The use of commercial silicones, already available in sheets and with extremely low costs, has been validated by creating a pressure test methodology and using it on many samples with different plasma bonding parameters to determine their best combination. A different but equally effective manufacturing technology for microfluidic devices was thus validated.
Technologies and Applications of Microfluidics for Scientific Research
27-mar-2024
BORGHI, Massimo
ZARDIN, Barbara
File in questo prodotto:
File Dimensione Formato  
Tesi definitiva - Ongaro Claudio - Technologies and Applications of Microfluidics for Scientific Research.pdf

Open access

Descrizione: Tesi definitiva - Ongaro Claudio - Technologies and Applications of Microfluidics for Scientific Research
Tipologia: Tesi di dottorato
Dimensione 10.72 MB
Formato Adobe PDF
10.72 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1336806
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact