The field of two-dimensional materials (2DMs) has seen a surge in interest, driven by the groundbreaking emergence of graphene as a pioneer material in this domain. The unique chemical and physical characteristics of 2DMs have opened up new opportunities for applications in electronics, energy storage, and conversion technologies to meet modern societal demands. While graphene continues to be at the forefront of research, a wide range of other 2D materials, including metal chalcogenides, boron nitride, MXenes, and two-dimensional polymers, are now being explored. The urgent need to close the knowledge gap between two-dimensional materials' scientific discovery and practical applications is the motivation behind this doctoral dissertation. The primary goal is to comprehensively understand the intrinsic properties of newly synthesized 2D materials and improve synthesis procedures to facilitate the smooth integration of these materials into tangible products. Additionally, the project addresses the creation of novel two-dimensional materials, focusing on the intricate process of organic molecules self-assembling on surfaces and exploring their subtle interactions with existing 2D materials. The project's three-year goal was to develop various processing methods for efficiently self-assemble of specific building blocks into carefully planned 2D structures. Multiscale characterization techniques, including Atomic Force Microscopy (AFM), Kelvin Probe Force Microscopy (KPFM) and Conductive AFM were employed for structural analysis and electrical characterization with nanometer size resolution and X-ray photoelectron spectroscopy for the chemical composition characterization. More specifically, the electrical properties and interactions between diverse 2D materials on various substrates are thoroughly investigated in this thesis. Using Kelvin probe force microscopy, changes in the work function of synthetic two-dimensional materials were monitored with respect to their thickness, polymer formation time, crystallinity, and substrate for 2D polymers and coordination polymer thin films, and with respect to the type of functionalization for other two-dimensional materials like MXenes. Additionally, the vertical conductivity of 2D polymers and coordination polymer thin films was evaluated by employing conductive AFM. Conductivity was monitored with respect to the 2D polymers' crystallinity, formation time, and film thickness. Another important goal of this thesis was the realization of a platform for controlled self-assembly of molecules on different substrates. The Temperature-enhanced solvent vapor annealing (TESVA) technique is the basis of the platform’s function offering the ability to self-assemble different molecules on any type of substrate (silicon and gold were used in this work), with control over experimental parameters such as temperature and height of the sample on the solvent reservoir. These factors are key parameters to achieve a controlled self-assembly. Utilizing TESVA, we successfully synthesized porphyrin crystals with distinct morphological features that are significantly larger and more homogeneous than the ones obtained with spontaneous self-assembly. In summary, we were able to effectively synthesize and self-assemble a variety of 2D materials on various substrates during the course of this thesis. These materials were then thoroughly studied utilizing a vast number of characterization techniques with an emphasis on their electrical properties. Our goal is that this work will serve as a roadmap for improved characterization and further research on two-dimensional materials.
Il campo dei materiali bidimensionali (2DM) ha suscitato negli ultimi anni un interesse enorme e sempre crescente, grazie all'emergere del grafene, il materiale pioniere in questo settore. Le caratteristiche chimiche e fisiche uniche dei materiali bidimensionali offrono opportunità per nuove applicazioni in elettronica, immagazzinamento e conversione dell'energia per soddisfare le esigenze della società moderna. Sebbene il grafene rimanga il materiale più studiato, si sta ora esplorando un'ampia gamma di ulteriori materiali 2D, come i calcogenuri metallici, il nitruro di boro, gli MXenes e i polimeri bidimensionali. L'urgente necessità di colmare il divario di conoscenze tra la scoperta scientifica dei materiali bidimensionali e le applicazioni pratiche è la motivazione alla base di questa tesi di dottorato. L'obiettivo principale è comprendere le proprietà intrinseche dei materiali 2D di nuova sintesi e migliorare le procedure di sintesi per facilitare l'integrazione di questi materiali in prodotti tangibili. Inoltre, il progetto affronta la creazione di nuovi materiali bidimensionali, concentrandosi sull'intricato processo di autoassemblaggio delle molecole organiche sulle superfici ed esplorando le loro sottili interazioni con i materiali 2D esistenti. L'obiettivo triennale del progetto era quello di sviluppare vari metodi di lavorazione per l'autoassemblaggio efficiente di specifici blocchi di costruzione in strutture 2D accuratamente pianificate. Sono state impiegate tecniche di caratterizzazione multiscala, tra cui la microscopia a forza atomica (AFM), la microscopia a sonda Kelvin Probe (KPFM) e l'AFM conduttivo per l'analisi strutturale e la caratterizzazione elettrica con risoluzione nanometrica e la spettroscopia di fotoelettroni a raggi X per la caratterizzazione della composizione chimica. In particolare, in questa tesi vengono studiate a fondo le proprietà elettriche e le interazioni tra diversi materiali 2D. Utilizzando la microscopia di Kelvin Probe, sono stati monitorati i cambiamenti nella funzione di lavoro dei materiali bidimensionali sintetici in relazione allo spessore, al tempo di formazione del polimero, alla cristallinità e al substrato per i polimeri 2D e i film sottili di polimeri di coordinazione, e in relazione al tipo di funzionalizzazione per altri materiali bidimensionali come gli MXenes. Inoltre, la conducibilità verticale dei due tipi di polimeri è stata valutata utilizzando l'AFM conduttivo. La conduttività è stata monitorata in relazione alla cristallinità, al tempo di formazione e allo spessore del film. Un altro importante obiettivo di questa tesi è stata la realizzazione di una piattaforma per l'autoassemblaggio controllato di molecole su diversi substrati. La tecnica TESVA (Temperature-enhanced solvent vapor annealing) è alla base del funzionamento della piattaforma e offre la possibilità di autoassemblare diverse molecole su qualsiasi tipo di substrato con il controllo di temperatura e l'altezza del campione sul serbatoio di solvente. Questi fattori sono parametri chiave per ottenere un autoassemblaggio controllato. Utilizzando TESVA, abbiamo sintetizzato con successo cristalli di porfirina, significativamente più grandi e più omogenei di quelli ottenuti con l'autoassemblaggio spontaneo. Riassumendo, nel corso di questa tesi siamo stati in grado di sintetizzare e autoassemblare efficacemente una varietà di materiali 2D su vari substrati. Questi materiali sono stati poi studiati a fondo utilizzando diverse tecniche di caratterizzazione avanzata, con particolare attenzione alle loro proprietà elettriche. Il nostro obiettivo è che questo lavoro serva da roadmap per guidare le future ricerche sui materiali bidimensionali e migliorare la loro caratterizzazione.
Autoassemblaggio sopramolecolare e caratterizzazione di materiali sintetici bidimensionali / Vasiliki Benekou , 2024 Apr 15. 36. ciclo, Anno Accademico 2022/2023.
Autoassemblaggio sopramolecolare e caratterizzazione di materiali sintetici bidimensionali
BENEKOU, VASILIKI
2024
Abstract
The field of two-dimensional materials (2DMs) has seen a surge in interest, driven by the groundbreaking emergence of graphene as a pioneer material in this domain. The unique chemical and physical characteristics of 2DMs have opened up new opportunities for applications in electronics, energy storage, and conversion technologies to meet modern societal demands. While graphene continues to be at the forefront of research, a wide range of other 2D materials, including metal chalcogenides, boron nitride, MXenes, and two-dimensional polymers, are now being explored. The urgent need to close the knowledge gap between two-dimensional materials' scientific discovery and practical applications is the motivation behind this doctoral dissertation. The primary goal is to comprehensively understand the intrinsic properties of newly synthesized 2D materials and improve synthesis procedures to facilitate the smooth integration of these materials into tangible products. Additionally, the project addresses the creation of novel two-dimensional materials, focusing on the intricate process of organic molecules self-assembling on surfaces and exploring their subtle interactions with existing 2D materials. The project's three-year goal was to develop various processing methods for efficiently self-assemble of specific building blocks into carefully planned 2D structures. Multiscale characterization techniques, including Atomic Force Microscopy (AFM), Kelvin Probe Force Microscopy (KPFM) and Conductive AFM were employed for structural analysis and electrical characterization with nanometer size resolution and X-ray photoelectron spectroscopy for the chemical composition characterization. More specifically, the electrical properties and interactions between diverse 2D materials on various substrates are thoroughly investigated in this thesis. Using Kelvin probe force microscopy, changes in the work function of synthetic two-dimensional materials were monitored with respect to their thickness, polymer formation time, crystallinity, and substrate for 2D polymers and coordination polymer thin films, and with respect to the type of functionalization for other two-dimensional materials like MXenes. Additionally, the vertical conductivity of 2D polymers and coordination polymer thin films was evaluated by employing conductive AFM. Conductivity was monitored with respect to the 2D polymers' crystallinity, formation time, and film thickness. Another important goal of this thesis was the realization of a platform for controlled self-assembly of molecules on different substrates. The Temperature-enhanced solvent vapor annealing (TESVA) technique is the basis of the platform’s function offering the ability to self-assemble different molecules on any type of substrate (silicon and gold were used in this work), with control over experimental parameters such as temperature and height of the sample on the solvent reservoir. These factors are key parameters to achieve a controlled self-assembly. Utilizing TESVA, we successfully synthesized porphyrin crystals with distinct morphological features that are significantly larger and more homogeneous than the ones obtained with spontaneous self-assembly. In summary, we were able to effectively synthesize and self-assemble a variety of 2D materials on various substrates during the course of this thesis. These materials were then thoroughly studied utilizing a vast number of characterization techniques with an emphasis on their electrical properties. Our goal is that this work will serve as a roadmap for improved characterization and further research on two-dimensional materials.File | Dimensione | Formato | |
---|---|---|---|
Tesi Definitiva PhD-Benekou Vasiliki.pdf
embargo fino al 15/04/2025
Descrizione: Tesi definitiva PhD-Benekou Vasiliki
Tipologia:
Tesi di dottorato
Dimensione
7.9 MB
Formato
Adobe PDF
|
7.9 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris