Exploiting qubits to develop new functional tools and devices is one of the main current challenges in quantum technologies (QT). Among the different physical realizations of qubits, magnetic molecules are a very promising option. In magnetic molecules, decoherence is mainly induced by magnetic noise, which can be controlled by chemical design. This Thesis mostly focuses on two new families of metal-organic paramagnets based on VO2+ complexes and containing a single unpaired electron (S = 1/2). These systems can exhibit sufficiently long coherence times (CTs) to behave as qubits relevant in QT. The first new type of qubit was assembled using a tetradentate proligand H2L containing two fused -diketones, whose synthesis and purification were carefully optimized. Its doubly deprotonated form L2− can bind transition metals through nuclear spin-free O donors, affording chemically stable and charge-neutral bis-chelated complexes. As a preliminary step, we investigated the reaction of L2− with Co2+ and Zn2+ and isolated crystals of the compounds [Co2L2py4] (2) and [Zn2L2py2] (5), which have an unexpected dimeric structure (py = pyridine). However, a manifold of 1H-NMR experiments, including DOSY and NOESY, established that both 2 and 5 turn to monomeric in solution. Magnetic measurements in the solid state demonstrated that the two high-spin Co2+ ions in 2 have a hard-axis anisotropy and show slow magnetic relaxation in an applied static field. The VO2+ complex of L2− was finally assembled and isolated in three different crystal phases (including a nanoporous phase), which invariably contain the dimeric molecules [(VO)2L2] (7). CW-EPR and DOSY experiments independently demonstrated that 7 also exists in monomeric form in organic solution. These monomers exhibit quantum spin coherence in frozen solution with T1 = 14 ms and Tm = 13 µs at 10 K. As a second new type of qubit, we investigated the lantern complexes [PtVO(SOCR)4] which are electrically neutral and contain nuclear spin-free donor atoms. While dimeric in the solid state, the derivative with R = Me or Ph are soluble, stable, and monomeric in organic solvents, as proved by DOSY and CV. Moreover, both complexes give highly resolved X-band EPR spectra in frozen solution, which evidence a measurable superhyperfine interaction with the I = 1/2 nucleus of the 195Pt isotope. DFT calculations ascribe the spin density delocalization on the Pt2+ ion to a combination of π and δ pathways, with the former predominating. Spin relaxation measurements in frozen solution at 10 K yielded Tm values of 6 μs for R = Me and 11 μs for R = Ph, showing that the proximal Pt2+ ion is not detrimental to the coherence properties of VO2+. Coherent spin manipulations at 70 K proved possible in both lanterns and in 7, as demonstrated by Rabi oscillations in nutation experiments. The results indicate that these VO2+ complexes can be used as robust spin-coherent building blocks in QT. Quantum tunneling between opposite orientations of non-Kramers spins generates level anti-crossings (LAC), which possess excellent stability against magnetic noise. Encoding a qubit in the superposition states that form at LAC is therefore an alternative strategy to increase the CT. Research carried out during the period abroad at the University of Barcelona focused on new homoleptic triple-stranded helicates containing bis-pyrazolylpyridine ligands and two octahedral Ni2+ ions, which show a tunable tunnel splitting between the two lowest electronic spin levels. These species can selectively encapsulate different guests (Cl−, Br−) and retain their structure in solution, as demonstrated by ESI-MS and multinuclear NMR investigation; paving the way to control the LAC and the spin dynamics of the Ni(II) centers via host-guest interactions.

Sfruttare i qubit per sviluppare nuovi dispositivi è una delle maggiori sfide nelle tecnologie quantistiche (TQ). Tra le diverse tipologie di qubit, molto promettenti risultano le molecole magnetiche, dove la decoerenza è indotta principalmente dal rumore magnetico, controllabile mediante design chimico. Questa Tesi si concentra principalmente su due nuove famiglie di paramagneti metallo-organici basati su complessi di VO2+ con un singolo elettrone spaiato (S = 1/2), i quali possono mostrare tempi di coerenza (TC) sufficientemente lunghi da agire come qubit rilevanti per le TQ. Il primo nuovo tipo di qubit è stato ottenuto dal prolegante tetradentato H2L contenente due gruppi β-dichetonici, la cui sintesi e purificazione sono state attentamente ottimizzate. La sua forma doppiamente deprotonata L2− può coordinare metalli di transizione attraverso donatori ossigenati privi di spin nucleare, fornendo complessi neutri e stabili. Inizialmente abbiamo studiato la reazione di L2− con Co2+ e Zn2+, isolando cristalli con struttura dimerica dei composti [Co2L2py4] (2) e [Zn2L2py2] (5) (py = piridina). Esperimenti 1H-NMR, inclusi DOSY e NOESY, hanno però stabilito che sia 2 che 5 diventano monomeri in soluzione. Misure magnetiche in stato solido hanno dimostrato che i due ioni Co2+ ad alto spin in 2 presentano un'anisotropia hard-axis e un rilassamento magnetico lento in campo applicato statico. Il complesso di VO2+ e L2− è stato infine assemblato e isolato in tre diverse fasi cristalline, inclusa una nanoporosa, che contengono sempre molecole dimeriche [(VO)2L2] (7). Esperimenti DOSY e CW-EPR hanno dimostrato che anche 7 diventa monomero in soluzione, mostrando coerenza quantistica di spin in soluzione congelata, con T1 = 14 ms e Tm = 13 µs a 10 K. Come secondo nuovo tipo di qubit, abbiamo studiato i complessi a lanterna [PtVO(SOCR)4]; neutri e contenenti atomi donatori privi di spin nucleare. Sebbene dimerici in stato solido, i derivati con R = Me o Ph sono solubili, stabili e monomerici in soluzione, come dimostrato da DOSY e CV. Tali derivati forniscono spettri EPR in banda X altamente risolti in soluzione congelata, evidenziando un'interazione superiperfine con il nucleo I = 1/2 dell'isotopo 195Pt. Calcoli DFT attribuiscono la delocalizzazione della densità di spin sullo ione Pt2+ a una combinazione di percorsi π e δ, con il primo predominante. Misure di rilassamento di spin in soluzione congelata a 10 K hanno fornito valori di Tm di 6 μs per R = Me e 11 μs per R = Ph, dimostrando che la prossimità di Pt2+ non è dannosa per le proprietà di coerenza di VO2+. Manipolazioni coerenti dello spin a 70 K sono possibili per entrambi i derivati e per 7, come dimostrato dall’osservazione delle oscillazioni di Rabi negli esperimenti di nutazione. Tali risultati indicano che questi complessi di VO2+ possono essere utilizzati come elementi costitutivi robusti e spin-coerenti nelle TQ. Il tunneling quantistico tra orientazioni opposte di spin non-Kramers, genera livelli di anti-crossing (LAC) con un'eccellente stabilità contro il rumore magnetico. Codificare un qubit negli stati di sovrapposizione che si formano ai LAC è quindi una strategia alternativa per aumentare il TC. La ricerca condotta durante il periodo all'estero presso l'Università di Barcellona, si è concentrata su nuovi elicati omoleptici a triplo filamento contenenti leganti bis-pirazolilpiridinici e due ioni Ni2+ ottaedrici, che mostrano un gap regolabile tra i due livelli inferiori di spin elettronico. Queste specie possono incapsulare selettivamente guest diversi (Cl−, Br−) e mantenere la loro struttura in soluzione, come dimostrato dalle indagini ESI-MS e NMR multinucleare; aprendo la strada al controllo delle LAC e della spin-dinamica dei centri Ni(II) tramite interazioni host-guest.

Qubit molecolari basati su paramagneti metallo-organici: progettazione, proprietà e utilizzo nelle tecnologie quantistiche / Manuel Imperato , 2024 Apr 15. 36. ciclo, Anno Accademico 2022/2023.

Qubit molecolari basati su paramagneti metallo-organici: progettazione, proprietà e utilizzo nelle tecnologie quantistiche

IMPERATO, MANUEL
2024

Abstract

Exploiting qubits to develop new functional tools and devices is one of the main current challenges in quantum technologies (QT). Among the different physical realizations of qubits, magnetic molecules are a very promising option. In magnetic molecules, decoherence is mainly induced by magnetic noise, which can be controlled by chemical design. This Thesis mostly focuses on two new families of metal-organic paramagnets based on VO2+ complexes and containing a single unpaired electron (S = 1/2). These systems can exhibit sufficiently long coherence times (CTs) to behave as qubits relevant in QT. The first new type of qubit was assembled using a tetradentate proligand H2L containing two fused -diketones, whose synthesis and purification were carefully optimized. Its doubly deprotonated form L2− can bind transition metals through nuclear spin-free O donors, affording chemically stable and charge-neutral bis-chelated complexes. As a preliminary step, we investigated the reaction of L2− with Co2+ and Zn2+ and isolated crystals of the compounds [Co2L2py4] (2) and [Zn2L2py2] (5), which have an unexpected dimeric structure (py = pyridine). However, a manifold of 1H-NMR experiments, including DOSY and NOESY, established that both 2 and 5 turn to monomeric in solution. Magnetic measurements in the solid state demonstrated that the two high-spin Co2+ ions in 2 have a hard-axis anisotropy and show slow magnetic relaxation in an applied static field. The VO2+ complex of L2− was finally assembled and isolated in three different crystal phases (including a nanoporous phase), which invariably contain the dimeric molecules [(VO)2L2] (7). CW-EPR and DOSY experiments independently demonstrated that 7 also exists in monomeric form in organic solution. These monomers exhibit quantum spin coherence in frozen solution with T1 = 14 ms and Tm = 13 µs at 10 K. As a second new type of qubit, we investigated the lantern complexes [PtVO(SOCR)4] which are electrically neutral and contain nuclear spin-free donor atoms. While dimeric in the solid state, the derivative with R = Me or Ph are soluble, stable, and monomeric in organic solvents, as proved by DOSY and CV. Moreover, both complexes give highly resolved X-band EPR spectra in frozen solution, which evidence a measurable superhyperfine interaction with the I = 1/2 nucleus of the 195Pt isotope. DFT calculations ascribe the spin density delocalization on the Pt2+ ion to a combination of π and δ pathways, with the former predominating. Spin relaxation measurements in frozen solution at 10 K yielded Tm values of 6 μs for R = Me and 11 μs for R = Ph, showing that the proximal Pt2+ ion is not detrimental to the coherence properties of VO2+. Coherent spin manipulations at 70 K proved possible in both lanterns and in 7, as demonstrated by Rabi oscillations in nutation experiments. The results indicate that these VO2+ complexes can be used as robust spin-coherent building blocks in QT. Quantum tunneling between opposite orientations of non-Kramers spins generates level anti-crossings (LAC), which possess excellent stability against magnetic noise. Encoding a qubit in the superposition states that form at LAC is therefore an alternative strategy to increase the CT. Research carried out during the period abroad at the University of Barcelona focused on new homoleptic triple-stranded helicates containing bis-pyrazolylpyridine ligands and two octahedral Ni2+ ions, which show a tunable tunnel splitting between the two lowest electronic spin levels. These species can selectively encapsulate different guests (Cl−, Br−) and retain their structure in solution, as demonstrated by ESI-MS and multinuclear NMR investigation; paving the way to control the LAC and the spin dynamics of the Ni(II) centers via host-guest interactions.
Molecular qubits based on metal-organic paramagnets: design, properties, and use in quantum technologies
15-apr-2024
CORNIA, Andrea
PARENTI, Francesca
NICOLINI, ALESSIO
File in questo prodotto:
File Dimensione Formato  
Tesi definitiva Imperato Manuel.pdf

embargo fino al 15/04/2025

Descrizione: Tesi definitiva Imperato Manuel
Tipologia: Tesi di dottorato
Dimensione 16.92 MB
Formato Adobe PDF
16.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1336646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact