The development of novel Kinetic Energy (KE) functionals is an important topic in density functional theory (DFT). In particular, this happens by means of an analysis with newly developed benchmark sets. Here, I present a study of Laplacian-level kinetic energy functionals applied to metallic nanosystems. The nanoparticles are modeled using jellium sph eres of different sizes, background densities, and number of electrons. The ability of different functionals to reproduce the correct kinetic energy density and potential of various nanoparticles is investigated and analyzed in terms of semilocal descriptors. Most semilocal KE functionals are based on modifications of the second-order gradient expansion GE2 or GE4. I find that the Laplacian contribute is fundamental for the description of the energy and the potential of nanoparticles.

Development of novel kinetic energy functional for orbital-free density functional theory applications / Urso, Vittoria. - In: INTERNATIONAL JOURNAL OF MODERN PHYSICS C. - ISSN 0129-1831. - 33:04(2022), pp. 2250044-1-2250044-14. [10.1142/s0129183122500449]

Development of novel kinetic energy functional for orbital-free density functional theory applications

Urso, Vittoria
2022

Abstract

The development of novel Kinetic Energy (KE) functionals is an important topic in density functional theory (DFT). In particular, this happens by means of an analysis with newly developed benchmark sets. Here, I present a study of Laplacian-level kinetic energy functionals applied to metallic nanosystems. The nanoparticles are modeled using jellium sph eres of different sizes, background densities, and number of electrons. The ability of different functionals to reproduce the correct kinetic energy density and potential of various nanoparticles is investigated and analyzed in terms of semilocal descriptors. Most semilocal KE functionals are based on modifications of the second-order gradient expansion GE2 or GE4. I find that the Laplacian contribute is fundamental for the description of the energy and the potential of nanoparticles.
2022
33
04
2250044-1
2250044-14
Development of novel kinetic energy functional for orbital-free density functional theory applications / Urso, Vittoria. - In: INTERNATIONAL JOURNAL OF MODERN PHYSICS C. - ISSN 0129-1831. - 33:04(2022), pp. 2250044-1-2250044-14. [10.1142/s0129183122500449]
Urso, Vittoria
File in questo prodotto:
File Dimensione Formato  
IJMPC1.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 2.8 MB
Formato Adobe PDF
2.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1336208
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact