Messenger RNA (mRNA) has an essential role in the protein production process. Predicting mRNA expression levels accurately is crucial for understanding gene regulation, and various models (statistical and neural network-based) have been developed for this purpose. A few models predict mRNA expression levels from the DNA sequence, exploiting the DNA sequence and gene features (e.g., number of exons/introns, gene length). Other models include information about long-range interaction molecules (i.e., enhancers/silencers) and transcriptional regulators as predictive features, such as transcription factors (TFs) and small RNAs (e.g., microRNAs - miRNAs). Recently, a convolutional neural network (CNN) model, called Xpresso, has been proposed for mRNA expression level prediction leveraging the promoter sequence and mRNAs’ half-life features (gene features). To push forward the mRNA level prediction, we present miREx, a CNN-based tool that includes information about miRNA targets and expression levels in the model. Indeed, each miRNA can target specific genes, and the model exploits this information to guide the learning process. In detail, not all miRNAs are included, only a selected subset with the highest impact on the model. MiREx has been evaluated on four cancer primary sites from the genomics data commons (GDC) database: lung, kidney, breast, and corpus uteri. Results show that mRNA level prediction benefits from selected miRNA targets and expression information. Future model developments could include other transcriptional regulators or be trained with proteomics data to infer protein levels.

MiREx: mRNA levels prediction from gene sequence and miRNA target knowledge / Pianfetti, E.; Lovino, M.; Ficarra, E.; Martignetti, L.. - In: BMC BIOINFORMATICS. - ISSN 1471-2105. - 24:1(2023), pp. 443-453. [10.1186/s12859-023-05560-1]

MiREx: mRNA levels prediction from gene sequence and miRNA target knowledge

Pianfetti E.
;
Lovino M.
;
Ficarra E.;
2023

Abstract

Messenger RNA (mRNA) has an essential role in the protein production process. Predicting mRNA expression levels accurately is crucial for understanding gene regulation, and various models (statistical and neural network-based) have been developed for this purpose. A few models predict mRNA expression levels from the DNA sequence, exploiting the DNA sequence and gene features (e.g., number of exons/introns, gene length). Other models include information about long-range interaction molecules (i.e., enhancers/silencers) and transcriptional regulators as predictive features, such as transcription factors (TFs) and small RNAs (e.g., microRNAs - miRNAs). Recently, a convolutional neural network (CNN) model, called Xpresso, has been proposed for mRNA expression level prediction leveraging the promoter sequence and mRNAs’ half-life features (gene features). To push forward the mRNA level prediction, we present miREx, a CNN-based tool that includes information about miRNA targets and expression levels in the model. Indeed, each miRNA can target specific genes, and the model exploits this information to guide the learning process. In detail, not all miRNAs are included, only a selected subset with the highest impact on the model. MiREx has been evaluated on four cancer primary sites from the genomics data commons (GDC) database: lung, kidney, breast, and corpus uteri. Results show that mRNA level prediction benefits from selected miRNA targets and expression information. Future model developments could include other transcriptional regulators or be trained with proteomics data to infer protein levels.
2023
24
1
443
453
MiREx: mRNA levels prediction from gene sequence and miRNA target knowledge / Pianfetti, E.; Lovino, M.; Ficarra, E.; Martignetti, L.. - In: BMC BIOINFORMATICS. - ISSN 1471-2105. - 24:1(2023), pp. 443-453. [10.1186/s12859-023-05560-1]
Pianfetti, E.; Lovino, M.; Ficarra, E.; Martignetti, L.
File in questo prodotto:
File Dimensione Formato  
s12859-023-05560-1.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1333849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact