Melanoma is a malignant cancer type which develops when DNA damage occurs (mainly due to environmental factors such as ultraviolet rays). Often, melanoma results in intense and aggressive cell growth that, if not caught in time, can bring one toward death. Thus, early identification at the initial stage is fundamental to stopping the spread of cancer. In this paper, a ViT-based architecture able to classify melanoma versus non-cancerous lesions is presented. The proposed predictive model is trained and tested on public skin cancer data from the ISIC challenge, and the obtained results are highly promising. Different classifier configurations are considered and analyzed in order to find the most discriminating one. The best one reached an accuracy of 0.948, sensitivity of 0.928, specificity of 0.967, and AUROC of 0.948.

Transformer-Based Approach to Melanoma Detection / Cirrincione, G.; Cannata, S.; Cicceri, G.; Prinzi, F.; Currieri, T.; Lovino, M.; Militello, C.; Pasero, E.; Vitabile, S.. - In: SENSORS. - ISSN 1424-8220. - 23:12(2023), pp. 5677-5687. [10.3390/s23125677]

Transformer-Based Approach to Melanoma Detection

Lovino M.;
2023

Abstract

Melanoma is a malignant cancer type which develops when DNA damage occurs (mainly due to environmental factors such as ultraviolet rays). Often, melanoma results in intense and aggressive cell growth that, if not caught in time, can bring one toward death. Thus, early identification at the initial stage is fundamental to stopping the spread of cancer. In this paper, a ViT-based architecture able to classify melanoma versus non-cancerous lesions is presented. The proposed predictive model is trained and tested on public skin cancer data from the ISIC challenge, and the obtained results are highly promising. Different classifier configurations are considered and analyzed in order to find the most discriminating one. The best one reached an accuracy of 0.948, sensitivity of 0.928, specificity of 0.967, and AUROC of 0.948.
2023
23
12
5677
5687
Transformer-Based Approach to Melanoma Detection / Cirrincione, G.; Cannata, S.; Cicceri, G.; Prinzi, F.; Currieri, T.; Lovino, M.; Militello, C.; Pasero, E.; Vitabile, S.. - In: SENSORS. - ISSN 1424-8220. - 23:12(2023), pp. 5677-5687. [10.3390/s23125677]
Cirrincione, G.; Cannata, S.; Cicceri, G.; Prinzi, F.; Currieri, T.; Lovino, M.; Militello, C.; Pasero, E.; Vitabile, S.
File in questo prodotto:
File Dimensione Formato  
sensors-23-05677-v2.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 784.76 kB
Formato Adobe PDF
784.76 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1333847
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact