This paper presents a computer-based methodology to support the design for additive manufacturing of metal components. Metal additive manufacturing, and in particular powder bed fusion systems, are playing a prominent role in the industry 4.0 scenario. The state of the art concerning design methods and tools to support design for additive manufacturing is reviewed by the authors. The key phases of product design and process design to achieve lightweight functional designs and reliable processes are deepened, and the computer-aided technologies to support the approaches implementation are described. Indeed, the state of the art design for additive manufacturing general workflow can be enriched by holistic approaches, use of numerical simulation, and integration and automation between the required tasks. The paper provides a methodology based on the systematic use of numerical simulation to achieve the optimization of both products and associated processes. To take advantage of the holistic perspective, the approach relies on the use of integrated product-process design platforms, allowing to streamline the digital process chain. Product design is based on the systematic integration of topology optimization and automatized tools for concept development and selection and subsequent product simulation driven design refinement. Process design is based on a systematic use of process simulation to prevent manufacturing flaws related to the high thermal gradients of metal processes and minimize residual stress and deformations. This is achieved by working on both the build cycles layouts and the 3D models' distortion compensation. An automotive use case of product and process design performed through the proposed simulation-driven integrated approach is provided to assess the actual method suitability for effective re-designs of additive manufacturing high-performance metal products. The bridged gaps are systematically outlined, and further developments are discussed.
Powder bed fusion integrated product and process design for additive manufacturing: a systematic approach driven by simulation / Dalpadulo, Enrico; Pini, Fabio; Leali, Francesco. - In: INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY. - ISSN 0268-3768. - 130:11-12(2024), pp. 5425-5440. [10.1007/s00170-024-13042-8]
Powder bed fusion integrated product and process design for additive manufacturing: a systematic approach driven by simulation
Dalpadulo, Enrico;Pini, Fabio;Leali, Francesco
2024
Abstract
This paper presents a computer-based methodology to support the design for additive manufacturing of metal components. Metal additive manufacturing, and in particular powder bed fusion systems, are playing a prominent role in the industry 4.0 scenario. The state of the art concerning design methods and tools to support design for additive manufacturing is reviewed by the authors. The key phases of product design and process design to achieve lightweight functional designs and reliable processes are deepened, and the computer-aided technologies to support the approaches implementation are described. Indeed, the state of the art design for additive manufacturing general workflow can be enriched by holistic approaches, use of numerical simulation, and integration and automation between the required tasks. The paper provides a methodology based on the systematic use of numerical simulation to achieve the optimization of both products and associated processes. To take advantage of the holistic perspective, the approach relies on the use of integrated product-process design platforms, allowing to streamline the digital process chain. Product design is based on the systematic integration of topology optimization and automatized tools for concept development and selection and subsequent product simulation driven design refinement. Process design is based on a systematic use of process simulation to prevent manufacturing flaws related to the high thermal gradients of metal processes and minimize residual stress and deformations. This is achieved by working on both the build cycles layouts and the 3D models' distortion compensation. An automotive use case of product and process design performed through the proposed simulation-driven integrated approach is provided to assess the actual method suitability for effective re-designs of additive manufacturing high-performance metal products. The bridged gaps are systematically outlined, and further developments are discussed.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris