: Iron(II) can show a very rich coordination chemistry with concomitant modulation of its properties as promising functional materials. Metalation of the neutral tridentate nitrogen-donor mer-coordinating ligand 2,6-bis(2-(methyl)-2H-tetrazol-5-yl)pyridine (Me2btp) with Fe(ClO4)2·6H2O through accurate solvent polarity control enables the selective crystallization of [FeHS/LS(Me2btp)2](ClO4)2·MeCN·2.75H2O (2HS/LS·MeCN·2.75H2O) as red rods, where half of the iron(II) centres resides in the low spin (LS, S = 0) state and the other half is in the high spin (HS, S = 2) state. The red rods spontaneously convert into yellow crystals once removed from the mother liquor and exposed to air due to solvent rearrangement within the crystal packing; these new crystals can be assigned to [FeHS(Me2btp)2](ClO4)2·solvent (2HS·solvent) where all the iron(II) centres are now blocked in the HS state, as confirmed by magnetic measurements. The polarity of the crystallization solvent, together with the maintenance of the crystals within the mother liquor, are pivotal for the reactivity and interconversion of different species. Indeed, upon long standing in solution, 2HS/LS·MeCN·2.75H2O converts to another form of red crystals belonging to [FeLS(Me2btp)2][FeHS(Me2btp)(MeCN)2(H2O)](ClO4)4·MeCN (2LS·3HS·MeCN), as confirmed by single crystal X-ray diffraction data. In this co-crystal, the iron(II) in 2 resides in the LS state at all temperatures while the iron(II) in 3 is blocked in the HS state. Well-formed yellow crystals could be also isolated among the red crystals of 2HS/LS·MeCN·2.75H2O, and they could be identified as the unprecedented octacoordinated species [Fe(Me2btp)2(MeCN)(H2O)](ClO4)2·H2O (1·H2O) by single-crystal X-ray diffraction. These yellow crystals are stable in the air, but slowly convert into 2LS·3HS·MeCN if kept in the mother liquor for about one week. 1·H2O can be considered the trapped intermediate in the solid state during the conversion of [FeHS(Me2btp)2]2+ into [FeHS(Me2btp)(MeCN)2(H2O)]2+ in solution, where the two tridentate ligands in the starting species can unfold to accommodate coordinated MeCN and H2O molecules, as confirmed by theoretical calculations, and eventually one of the two Me2btp is completely replaced by the solvent.

Trapping an unprecedented octacoordinated iron(ii) complex with neutral bis-tetrazolylpyridyl ligands and solvent molecules / Rigamonti, Luca; Marchi, Lorenzo; Fiorini, Valentina; Stagni, Stefano; Zacchini, Stefano; Pinkowicz, Dawid; Dziedzic-Kocurek, Katarzyna; Forni, Alessandra; Muniz Miranda, Francesco; Mazzoni, Rita. - In: DALTON TRANSACTIONS. - ISSN 1477-9226. - 53:(2024), pp. 3490-3498. [10.1039/d3dt04026g]

Trapping an unprecedented octacoordinated iron(ii) complex with neutral bis-tetrazolylpyridyl ligands and solvent molecules

Rigamonti, Luca;Marchi, Lorenzo;Muniz Miranda, Francesco;
2024

Abstract

: Iron(II) can show a very rich coordination chemistry with concomitant modulation of its properties as promising functional materials. Metalation of the neutral tridentate nitrogen-donor mer-coordinating ligand 2,6-bis(2-(methyl)-2H-tetrazol-5-yl)pyridine (Me2btp) with Fe(ClO4)2·6H2O through accurate solvent polarity control enables the selective crystallization of [FeHS/LS(Me2btp)2](ClO4)2·MeCN·2.75H2O (2HS/LS·MeCN·2.75H2O) as red rods, where half of the iron(II) centres resides in the low spin (LS, S = 0) state and the other half is in the high spin (HS, S = 2) state. The red rods spontaneously convert into yellow crystals once removed from the mother liquor and exposed to air due to solvent rearrangement within the crystal packing; these new crystals can be assigned to [FeHS(Me2btp)2](ClO4)2·solvent (2HS·solvent) where all the iron(II) centres are now blocked in the HS state, as confirmed by magnetic measurements. The polarity of the crystallization solvent, together with the maintenance of the crystals within the mother liquor, are pivotal for the reactivity and interconversion of different species. Indeed, upon long standing in solution, 2HS/LS·MeCN·2.75H2O converts to another form of red crystals belonging to [FeLS(Me2btp)2][FeHS(Me2btp)(MeCN)2(H2O)](ClO4)4·MeCN (2LS·3HS·MeCN), as confirmed by single crystal X-ray diffraction data. In this co-crystal, the iron(II) in 2 resides in the LS state at all temperatures while the iron(II) in 3 is blocked in the HS state. Well-formed yellow crystals could be also isolated among the red crystals of 2HS/LS·MeCN·2.75H2O, and they could be identified as the unprecedented octacoordinated species [Fe(Me2btp)2(MeCN)(H2O)](ClO4)2·H2O (1·H2O) by single-crystal X-ray diffraction. These yellow crystals are stable in the air, but slowly convert into 2LS·3HS·MeCN if kept in the mother liquor for about one week. 1·H2O can be considered the trapped intermediate in the solid state during the conversion of [FeHS(Me2btp)2]2+ into [FeHS(Me2btp)(MeCN)2(H2O)]2+ in solution, where the two tridentate ligands in the starting species can unfold to accommodate coordinated MeCN and H2O molecules, as confirmed by theoretical calculations, and eventually one of the two Me2btp is completely replaced by the solvent.
2024
23-gen-2024
53
3490
3498
Trapping an unprecedented octacoordinated iron(ii) complex with neutral bis-tetrazolylpyridyl ligands and solvent molecules / Rigamonti, Luca; Marchi, Lorenzo; Fiorini, Valentina; Stagni, Stefano; Zacchini, Stefano; Pinkowicz, Dawid; Dziedzic-Kocurek, Katarzyna; Forni, Alessandra; Muniz Miranda, Francesco; Mazzoni, Rita. - In: DALTON TRANSACTIONS. - ISSN 1477-9226. - 53:(2024), pp. 3490-3498. [10.1039/d3dt04026g]
Rigamonti, Luca; Marchi, Lorenzo; Fiorini, Valentina; Stagni, Stefano; Zacchini, Stefano; Pinkowicz, Dawid; Dziedzic-Kocurek, Katarzyna; Forni, Alessandra; Muniz Miranda, Francesco; Mazzoni, Rita
File in questo prodotto:
File Dimensione Formato  
D3DT04026G.pdf

Accesso riservato

Descrizione: main article
Tipologia: Versione pubblicata dall'editore
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1332532
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact