We present a feasibility study on biological tissue and cell manipulation by a novel, multi-hinge microgripper characterized by high dexterity and complex in-plane tips displacement, while being at the same time highly compact and easy to manufacture via MEMS technology. The device was obtained by combining selective flexibility with planar fabrication technology and has been developed to propose new solutions for miniaturized, inexpensive, energy-efficient, effective and accurate manipulation at the micro-scale. The presented study consists of a direct morphological comparison with real-life cardiac and lung tissue samples, and was accomplished via in-vitro microscope observation. The results highlight the function capability of manipulating, grasping and clamping objects having a size of 50 to 150 µm, including muscle fibers, blood vessels and cells, encouraging further developments toward an in-vivo scenario with actual biological material.

Compliant Microgripper for In-Vitro Biological Manipulation / Buzzin, A.; Cecchi, R.; Vurchio, F.; Veroli, A.; Scorza, A.; Sciuto, S. A.; de Cesare, G.; Belfiore, N. P.. - 918:(2023), pp. 21-26. (Intervento presentato al convegno Annual Italian Conference on Sensors and Microsystems, AISEM 2021 tenutosi a ita nel 2021) [10.1007/978-3-031-08136-1_4].

Compliant Microgripper for In-Vitro Biological Manipulation

Cecchi R.;
2023

Abstract

We present a feasibility study on biological tissue and cell manipulation by a novel, multi-hinge microgripper characterized by high dexterity and complex in-plane tips displacement, while being at the same time highly compact and easy to manufacture via MEMS technology. The device was obtained by combining selective flexibility with planar fabrication technology and has been developed to propose new solutions for miniaturized, inexpensive, energy-efficient, effective and accurate manipulation at the micro-scale. The presented study consists of a direct morphological comparison with real-life cardiac and lung tissue samples, and was accomplished via in-vitro microscope observation. The results highlight the function capability of manipulating, grasping and clamping objects having a size of 50 to 150 µm, including muscle fibers, blood vessels and cells, encouraging further developments toward an in-vivo scenario with actual biological material.
2023
Annual Italian Conference on Sensors and Microsystems, AISEM 2021
ita
2021
918
21
26
Buzzin, A.; Cecchi, R.; Vurchio, F.; Veroli, A.; Scorza, A.; Sciuto, S. A.; de Cesare, G.; Belfiore, N. P.
Compliant Microgripper for In-Vitro Biological Manipulation / Buzzin, A.; Cecchi, R.; Vurchio, F.; Veroli, A.; Scorza, A.; Sciuto, S. A.; de Cesare, G.; Belfiore, N. P.. - 918:(2023), pp. 21-26. (Intervento presentato al convegno Annual Italian Conference on Sensors and Microsystems, AISEM 2021 tenutosi a ita nel 2021) [10.1007/978-3-031-08136-1_4].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1332336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact