This paper presents a Runtime Verification (RV) approach for Multi-Agent Systems (MAS) using the JaCaMo framework. Our objective is to bring a layer of security to the MAS. This is achieved keeping in mind possible safety-critical uses of the MAS, such as robotic applications. This layer is capable of controlling events during the execution of the system without needing a specific implementation in the behaviour of each agent to recognise the events. In this paper, we mainly focus on MAS when used in the context of hybrid intelligence. This use requires communication between software agents and human beings. In some cases, communication takes place via natural language dialogues. However, this kind of communication brings us to a concern related to controlling the flow of dialogue so that agents can prevent any change in the topic of discussion that could impair their reasoning. The latter may be a problem and undermine the development of the software agents. In this paper, we tackle this problem by proposing and demonstrating the implementation of a framework that aims to control the dialogue flow in a MAS; especially when the MAS communicates with the user through natural language to aid decision-making in a hospital bed allocation scenario.
RV4JaCa—Towards Runtime Verification of Multi-Agent Systems and Robotic Applications / Engelmann, D. C.; Ferrando, A.; Panisson, A. R.; Ancona, D.; Bordini, R. H.; Mascardi, V.. - In: ROBOTICS. - ISSN 2218-6581. - 12:2(2023), pp. 49-69. [10.3390/robotics12020049]
RV4JaCa—Towards Runtime Verification of Multi-Agent Systems and Robotic Applications
Ferrando A.;
2023
Abstract
This paper presents a Runtime Verification (RV) approach for Multi-Agent Systems (MAS) using the JaCaMo framework. Our objective is to bring a layer of security to the MAS. This is achieved keeping in mind possible safety-critical uses of the MAS, such as robotic applications. This layer is capable of controlling events during the execution of the system without needing a specific implementation in the behaviour of each agent to recognise the events. In this paper, we mainly focus on MAS when used in the context of hybrid intelligence. This use requires communication between software agents and human beings. In some cases, communication takes place via natural language dialogues. However, this kind of communication brings us to a concern related to controlling the flow of dialogue so that agents can prevent any change in the topic of discussion that could impair their reasoning. The latter may be a problem and undermine the development of the software agents. In this paper, we tackle this problem by proposing and demonstrating the implementation of a framework that aims to control the dialogue flow in a MAS; especially when the MAS communicates with the user through natural language to aid decision-making in a hospital bed allocation scenario.File | Dimensione | Formato | |
---|---|---|---|
robotics-12-00049-v2.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.3 MB
Formato
Adobe PDF
|
2.3 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris