The sheared-passive margin offshore Durban (South Africa) is characterized by a narrow continental shelf and steep slope hosting numerous submarine canyons. Supply of sediment to the margin is predominantly terrigenous, dominated by discharge from several short but fast-flowing rivers. International Ocean Discovery Program Expedition 361 provides a unique opportunity to investigate the role of sea-level fluctuations on the sedimentation patterns and slope instability along the South African margin. We analysed >300 sediment samples and downcore variations in P-wave, magnetic susceptibility, bioturbation intensity and bulk density from site U1474, as well as regional seismic reflection profiles to: (1) document an increase in sand input since the Mid-Pliocene; (2) associate this change to a drop in sea-level and extension of subaerial drainage systems towards the shelf-edge; (3) demonstrate that slope instability has played a key role in the evolution of the South Africa margin facing the Natal Valley. Furthermore, we highlight how the widespread occurrence of failure events reflects the tectonic control on the morphology of the shelf and slope, as well as bottom-current scour and instability of fan complexes. This information is important to improve hazard assessment in a populated coastal region with growing offshore hydrocarbon activities.

Impact of sea-level fluctuations on the sedimentation patterns of the SE African margin: implications for slope instability / Micallef, A; Georgiopoulou, A; Green, A; Maselli, V. - 500:1(2020), pp. 267-276. [10.1144/SP500-2019-172]

Impact of sea-level fluctuations on the sedimentation patterns of the SE African margin: implications for slope instability

Maselli V
2020

Abstract

The sheared-passive margin offshore Durban (South Africa) is characterized by a narrow continental shelf and steep slope hosting numerous submarine canyons. Supply of sediment to the margin is predominantly terrigenous, dominated by discharge from several short but fast-flowing rivers. International Ocean Discovery Program Expedition 361 provides a unique opportunity to investigate the role of sea-level fluctuations on the sedimentation patterns and slope instability along the South African margin. We analysed >300 sediment samples and downcore variations in P-wave, magnetic susceptibility, bioturbation intensity and bulk density from site U1474, as well as regional seismic reflection profiles to: (1) document an increase in sand input since the Mid-Pliocene; (2) associate this change to a drop in sea-level and extension of subaerial drainage systems towards the shelf-edge; (3) demonstrate that slope instability has played a key role in the evolution of the South Africa margin facing the Natal Valley. Furthermore, we highlight how the widespread occurrence of failure events reflects the tectonic control on the morphology of the shelf and slope, as well as bottom-current scour and instability of fan complexes. This information is important to improve hazard assessment in a populated coastal region with growing offshore hydrocarbon activities.
2020
Subaqueous Mass Movements and their Consequences: Advances in Process Understanding, Monitoring and Hazard Assessments
Geological Society of London
Impact of sea-level fluctuations on the sedimentation patterns of the SE African margin: implications for slope instability / Micallef, A; Georgiopoulou, A; Green, A; Maselli, V. - 500:1(2020), pp. 267-276. [10.1144/SP500-2019-172]
Micallef, A; Georgiopoulou, A; Green, A; Maselli, V
File in questo prodotto:
File Dimensione Formato  
GSL_2020.pdf

Accesso riservato

Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1331542
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact