Over the last decade, there has been a resurgence of interest in the climatic and tectonic mechanisms that drove the Messinian salinity crisis (MSC) and the associated deposition of thick evaporites. The MSC represents an unprecedented palaeoceanographic change that led to a very short (ca. 640 kyr) ecological and environmental crisis. However, across the Levantine offshore basin, the sedimentological nature of the top evaporitic units and the mechanisms that controlled the transition from a hypersaline evaporitic unit to brackish deposits (final MSC stage 3) are still disputed. Here, we re-evaluate the deposits associated with the terminal phase of the MSC, named in offshore Lebanon as the Nahr Menashe Unit (NMU). We describe the NMU seismic facies, characterize and map its internal seismic stratigraphy and provide a new interpretation of its depositional environment, which persisted during the late Messinian and then evolved through a regional reflooding event. The base of the NMU overlies semicircular depressions, randomly distributed linear marks and surface collapse features, which are indicative of a period of intense evaporite dissolution. The NMU seismic facies observed from the slope to the deep part of the basin support the interpretation of a layered salt-evaporite-sand depositional system subject to complex reworking, dissolution, deposition and final erosion. A drainage network of valleys and complex tributary channels incising into the top NMU shows marked erosional characteristics, which indicate a dominant southwards sediment transfer following deposition of the NMU. The drainage network was subsequently infilled by layered sediments interpreted here to represent the post-MSC marine sediments. Our analysis adds important details regarding previous interpretations of the NMU as fluvial in origin. Specifically, the presence of subcircular, linear dissolution features coupled with mound-like features indicates that the NMU is composed dominantly of evaporites that were subject to dissolution prior to erosion associated with the drainage network. The NMU is interpreted to represent the deposition/redeposition of a mixed evaporite-siliciclastic succession in a shallow marine or lacustrine environment during the tilting of the offshore Lebanese basin.

Seismic characterization and depositional significance of the Nahr Menashe deposits: Implications for the terminal phases of the Messinian salinity crisis in the north-east Levant Basin, offshore Lebanon / Kabir, Smm; Iacopini, D; Hartley, A; Maselli, V; Oppo, D. - In: BASIN RESEARCH. - ISSN 0950-091X. - 34:6(2022), pp. 2085-2110. [10.1111/bre.12697]

Seismic characterization and depositional significance of the Nahr Menashe deposits: Implications for the terminal phases of the Messinian salinity crisis in the north-east Levant Basin, offshore Lebanon

Maselli V;
2022

Abstract

Over the last decade, there has been a resurgence of interest in the climatic and tectonic mechanisms that drove the Messinian salinity crisis (MSC) and the associated deposition of thick evaporites. The MSC represents an unprecedented palaeoceanographic change that led to a very short (ca. 640 kyr) ecological and environmental crisis. However, across the Levantine offshore basin, the sedimentological nature of the top evaporitic units and the mechanisms that controlled the transition from a hypersaline evaporitic unit to brackish deposits (final MSC stage 3) are still disputed. Here, we re-evaluate the deposits associated with the terminal phase of the MSC, named in offshore Lebanon as the Nahr Menashe Unit (NMU). We describe the NMU seismic facies, characterize and map its internal seismic stratigraphy and provide a new interpretation of its depositional environment, which persisted during the late Messinian and then evolved through a regional reflooding event. The base of the NMU overlies semicircular depressions, randomly distributed linear marks and surface collapse features, which are indicative of a period of intense evaporite dissolution. The NMU seismic facies observed from the slope to the deep part of the basin support the interpretation of a layered salt-evaporite-sand depositional system subject to complex reworking, dissolution, deposition and final erosion. A drainage network of valleys and complex tributary channels incising into the top NMU shows marked erosional characteristics, which indicate a dominant southwards sediment transfer following deposition of the NMU. The drainage network was subsequently infilled by layered sediments interpreted here to represent the post-MSC marine sediments. Our analysis adds important details regarding previous interpretations of the NMU as fluvial in origin. Specifically, the presence of subcircular, linear dissolution features coupled with mound-like features indicates that the NMU is composed dominantly of evaporites that were subject to dissolution prior to erosion associated with the drainage network. The NMU is interpreted to represent the deposition/redeposition of a mixed evaporite-siliciclastic succession in a shallow marine or lacustrine environment during the tilting of the offshore Lebanese basin.
2022
34
6
2085
2110
Seismic characterization and depositional significance of the Nahr Menashe deposits: Implications for the terminal phases of the Messinian salinity crisis in the north-east Levant Basin, offshore Lebanon / Kabir, Smm; Iacopini, D; Hartley, A; Maselli, V; Oppo, D. - In: BASIN RESEARCH. - ISSN 0950-091X. - 34:6(2022), pp. 2085-2110. [10.1111/bre.12697]
Kabir, Smm; Iacopini, D; Hartley, A; Maselli, V; Oppo, D
File in questo prodotto:
File Dimensione Formato  
Basin Research - Kabir.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1331521
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact