Oppositely charged ionic surfactants can self-assemble into hollow structures, called catanionic vesicles, where the anionic-cationic surfactant pair assumes a double-tailed zwitterionic attitude. In the present work, multilamellar-to-unilamellar thermal transition of a mixed aqueous system of sodium dodecyl sulphate (SDS) and cetyl trimethyl ammonium bromide (CTAB), with a slight excess of the anionic one, has been investigated by 1H, 2H, 14N NMR spectra and 23Na transverse relaxation measurements. It has been inferred that an increase of the temperature enhances the SDS counterion dissociation, which can be considered as one of the driving forces of the mentioned transition. Moreover, interesting 23Na T2 changes with temperature have been detected for unilamellar aggregates.
Oppositely charged ionic surfactants can self-assemble into hollow structures, called catanionic vesicles, where the anionic-cationic surfactant pair assumes a double-tailed zwitterionic attitude. In the present work, multilamellar- to-unilamellar thermal transition of a mixed aqueous system of sodium dodecyl sulphate (SDS) and cetyl trimethyl ammonium bromide (CTAB), with a slight excess of the anionic one, has been investigated by 1H, 2H, 14N NMR spectra and 23Na transverse relaxation measurements. It has been inferred that an increase of the temperature enhances the SDS counterion dissociation, which can be considered as one of the driving forces of the mentioned transition. Moreover, interesting 23Na T2 changes with temperature have been detected for unilamellar aggregates. © Springer-Verlag Berlin Heidelberg 2012.
Insights into catanionic vesicles thermal transition by NMR spectroscopy / Milcovich, G.; Asaro, F.. - 139:(2012), pp. 35-38. [10.1007/978-3-642-28974-3_7]
Insights into catanionic vesicles thermal transition by NMR spectroscopy
Milcovich G.;
2012
Abstract
Oppositely charged ionic surfactants can self-assemble into hollow structures, called catanionic vesicles, where the anionic-cationic surfactant pair assumes a double-tailed zwitterionic attitude. In the present work, multilamellar- to-unilamellar thermal transition of a mixed aqueous system of sodium dodecyl sulphate (SDS) and cetyl trimethyl ammonium bromide (CTAB), with a slight excess of the anionic one, has been investigated by 1H, 2H, 14N NMR spectra and 23Na transverse relaxation measurements. It has been inferred that an increase of the temperature enhances the SDS counterion dissociation, which can be considered as one of the driving forces of the mentioned transition. Moreover, interesting 23Na T2 changes with temperature have been detected for unilamellar aggregates. © Springer-Verlag Berlin Heidelberg 2012.File | Dimensione | Formato | |
---|---|---|---|
Insights_into_catanionic.pdf
Accesso riservato
Dimensione
299.67 kB
Formato
Adobe PDF
|
299.67 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris