Here we focus the attention on the physical characteristics of a highly biocompatible hydrogel made up of crosslinked alginate and Pluronic F127 (PF127). This is a composite polymeric blend we propose for artery endoluminal delivery of an emerging class of molecules named nucleic acid based drugs (NABDs). The physical characterization of our composite gel, i.e. mesh size distribution and PF127–alginate mutual organization after crosslinking, can significantly determine the NABDs release kinetics. Thus, to explore these aspects, different technical approaches, i.e. rheology, low/high field NMR and TEM, were used. While rheology provided information at the macroscopic and nano-level, the other three approaches gave details at the nano-level. We observe that Pluronic micelles, organizing in cubic ordered domains, generate, upon alginate crosslinking, the formation of meshes (z150 nm) larger than those occurring in a Pluronic-free alginate network (z25 nm). Nevertheless, smaller alginate meshes are still on and can just host un-structured Pluronic micelles and water. Accordingly, the gel structure is quite inhomogeneous, where big meshes (filled by crystalline Pluronic) co-exist with smaller meshes (hosting water and un-structured PF127 micelles). While big meshes offer a considerable hindering action on a diffusing solute, smaller ones represent a sort of free space where solute diffusion is faster. The presence of big and small meshes indicates that drug release may follow a double kinetics characterized by a fast and slow release. Notably, this behavior is considered appropriate for endoluminal drug release to the arterial wall.

Here we focus the attention on the physical characteristics of a highly biocompatible hydrogel made up of crosslinked alginate and Pluronic F127 (PF127). This is a composite polymeric blend we propose for artery endoluminal delivery of an emerging class of molecules named nucleic acid based drugs (NABDs). The physical characterization of our composite gel, i.e. mesh size distribution and PF127-alginate mutual organization after crosslinking, can significantly determine the NABDs release kinetics. Thus, to explore these aspects, different technical approaches, i.e. rheology, low/high field NMR and TEM, were used. While rheology provided information at the macroscopic and nano-level, the other three approaches gave details at the nano-level. We observe that Pluronic micelles, organizing in cubic ordered domains, generate, upon alginate crosslinking, the formation of meshes (≈150 nm) larger than those occurring in a Pluronic-free alginate network (≈25 nm). Nevertheless, smaller alginate meshes are still on and can just host un-structured Pluronic micelles and water. Accordingly, the gel structure is quite inhomogeneous, where big meshes (filled by crystalline Pluronic) co-exist with smaller meshes (hosting water and un-structured PF127 micelles). While big meshes offer a considerable hindering action on a diffusing solute, smaller ones represent a sort of free space where solute diffusion is faster. The presence of big and small meshes indicates that drug release may follow a double kinetics characterized by a fast and slow release. Notably, this behavior is considered appropriate for endoluminal drug release to the arterial wall. © The Royal Society of Chemistry 2014.

Physical characterization of alginate-Pluronic F127 gel for endoluminal NABDs delivery / Abrami, M.; D'Agostino, I.; Milcovich, G.; Fiorentino, S.; Farra, R.; Asaro, F.; Lapasin, R.; Grassi, G.; Grassi, M.. - In: SOFT MATTER. - ISSN 1744-683X. - 10:5(2014), pp. 729-737. [10.1039/c3sm51873f]

Physical characterization of alginate-Pluronic F127 gel for endoluminal NABDs delivery

Milcovich G.;
2014

Abstract

Here we focus the attention on the physical characteristics of a highly biocompatible hydrogel made up of crosslinked alginate and Pluronic F127 (PF127). This is a composite polymeric blend we propose for artery endoluminal delivery of an emerging class of molecules named nucleic acid based drugs (NABDs). The physical characterization of our composite gel, i.e. mesh size distribution and PF127-alginate mutual organization after crosslinking, can significantly determine the NABDs release kinetics. Thus, to explore these aspects, different technical approaches, i.e. rheology, low/high field NMR and TEM, were used. While rheology provided information at the macroscopic and nano-level, the other three approaches gave details at the nano-level. We observe that Pluronic micelles, organizing in cubic ordered domains, generate, upon alginate crosslinking, the formation of meshes (≈150 nm) larger than those occurring in a Pluronic-free alginate network (≈25 nm). Nevertheless, smaller alginate meshes are still on and can just host un-structured Pluronic micelles and water. Accordingly, the gel structure is quite inhomogeneous, where big meshes (filled by crystalline Pluronic) co-exist with smaller meshes (hosting water and un-structured PF127 micelles). While big meshes offer a considerable hindering action on a diffusing solute, smaller ones represent a sort of free space where solute diffusion is faster. The presence of big and small meshes indicates that drug release may follow a double kinetics characterized by a fast and slow release. Notably, this behavior is considered appropriate for endoluminal drug release to the arterial wall. © The Royal Society of Chemistry 2014.
2014
10
5
729
737
Physical characterization of alginate-Pluronic F127 gel for endoluminal NABDs delivery / Abrami, M.; D'Agostino, I.; Milcovich, G.; Fiorentino, S.; Farra, R.; Asaro, F.; Lapasin, R.; Grassi, G.; Grassi, M.. - In: SOFT MATTER. - ISSN 1744-683X. - 10:5(2014), pp. 729-737. [10.1039/c3sm51873f]
Abrami, M.; D'Agostino, I.; Milcovich, G.; Fiorentino, S.; Farra, R.; Asaro, F.; Lapasin, R.; Grassi, G.; Grassi, M.
File in questo prodotto:
File Dimensione Formato  
Soft Matter 10 2014.pdf

Accesso riservato

Dimensione 547.6 kB
Formato Adobe PDF
547.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1331475
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 39
social impact