The limited stability of catanionic vesicles has discouraged their wide use for encapsulation and controlled release of active substances. Their structure can easily break down to form lamellar phases, micelles or rearrange into multilamellar vesicles, as a consequence of small changes in their composition. However, despite the limited stability, catanionic vesicles possess an attractive architecture, which is able to efficiently encapsulate both hydrophobic and hydrophilic molecules. Therefore, improving the stability of the vesicles, as well as the control on unilamellar structures, are prerequisites for their wider application range. This study focuses on the impact of β-cyclodextrins for the stabilization of SDS/CTAB catanionic vesicles. Molar ratio and sample preparation procedures have been investigated to evaluate the temperature stability of catanionic vesicles. Diffusion and spectroscopic techniques evidenced that when β-cyclodextrins are added, unilamellar structures are stabilized above the multilamellar-unilamellar vesicles critical temperature. The results evidence encouraging perspectives for the use of vesicular nanoreservoirs for drug depot applications.
The limited stability of catanionic vesicles has discouraged their wide use for encapsulation and controlled release of active substances. Their structure can easily break down to form lamellar phases, micelles or rearrange into multilamellar vesicles, as a consequence of small changes in their composition. However, despite the limited stability, catanionic vesicles possess an attractive architecture, which is able to efficiently encapsulate both hydrophobic and hydrophilic molecules. Therefore, improving the stability of the vesicles, as well as the control on unilamellar structures, are prerequisites for their wider application range. This study focuses on the impact of β-cyclodextrins for the stabilization of SDS/CTAB catanionic vesicles. Molar ratio and sample preparation procedures have been investigated to evaluate the temperature stability of catanionic vesicles. Diffusion and spectroscopic techniques evidenced that when β-cyclodextrins are added, unilamellar structures are stabilized above the multilamellar-unilamellar vesicles critical temperature. The results evidence encouraging perspectives for the use of vesicular nanoreservoirs for drug depot applications.
Stabilization of unilamellar catanionic vesicles induced by β-cyclodextrins: A strategy for a tunable drug delivery depot / Milcovich, Gesmi; Antunes, Filipe E.; Grassi, Mario; Asaro, Fioretta. - In: INTERNATIONAL JOURNAL OF PHARMACEUTICS. - ISSN 0378-5173. - 548:1(2018), pp. 474-479. [10.1016/j.ijpharm.2018.07.026]
Stabilization of unilamellar catanionic vesicles induced by β-cyclodextrins: A strategy for a tunable drug delivery depot
Gesmi Milcovich;
2018
Abstract
The limited stability of catanionic vesicles has discouraged their wide use for encapsulation and controlled release of active substances. Their structure can easily break down to form lamellar phases, micelles or rearrange into multilamellar vesicles, as a consequence of small changes in their composition. However, despite the limited stability, catanionic vesicles possess an attractive architecture, which is able to efficiently encapsulate both hydrophobic and hydrophilic molecules. Therefore, improving the stability of the vesicles, as well as the control on unilamellar structures, are prerequisites for their wider application range. This study focuses on the impact of β-cyclodextrins for the stabilization of SDS/CTAB catanionic vesicles. Molar ratio and sample preparation procedures have been investigated to evaluate the temperature stability of catanionic vesicles. Diffusion and spectroscopic techniques evidenced that when β-cyclodextrins are added, unilamellar structures are stabilized above the multilamellar-unilamellar vesicles critical temperature. The results evidence encouraging perspectives for the use of vesicular nanoreservoirs for drug depot applications.File | Dimensione | Formato | |
---|---|---|---|
IJP 548 2018.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1-s2.0-S0378517318304940-mmc1.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
375.62 kB
Formato
Adobe PDF
|
375.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2929968_IJP+548+2018-PostPrint.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris