We consider a variable metric and inexact version of the fast iterative soft-thresholding algorithm (FISTA) type algorithm considered in [L. Calatroni and A. Chambolle, SIAM J. Optim., 29 (2019), pp. 1772-1798; A. Chambolle and T. Pock, Acta Numer., 25 (2016), pp. 161-319] for the minimization of the sum of two (possibly strongly) convex functions. The proposed algorithm is combined with an adaptive (nonmonotone) backtracking strategy, which allows for the adjustment of the algorithmic step-size along the iterations in order to improve the convergence speed. We prove a linear convergence result for the function values, which depends on both the strong convexity moduli of the two functions and the upper and lower bounds on the spectrum of the variable metric operators. We validate the proposed algorithm, named Scaled Adaptive GEneralized FISTA (SAGE-FISTA), on exemplar image denoising and deblurring problems where edge-preserving total variation (TV) regularization is combined with Kullback-Leibler-type fidelity terms, as is common in applications where signal-dependent Poisson noise is assumed in the data.
SCALED, INEXACT, AND ADAPTIVE GENERALIZED FISTA FOR STRONGLY CONVEX OPTIMIZATION / Rebegoldi, S.; Calatroni, L.. - In: SIAM JOURNAL ON OPTIMIZATION. - ISSN 1052-6234. - 32:3(2022), pp. 2428-2459. [10.1137/21M1391699]
SCALED, INEXACT, AND ADAPTIVE GENERALIZED FISTA FOR STRONGLY CONVEX OPTIMIZATION
Rebegoldi S.
Membro del Collaboration Group
;Calatroni L.Membro del Collaboration Group
2022
Abstract
We consider a variable metric and inexact version of the fast iterative soft-thresholding algorithm (FISTA) type algorithm considered in [L. Calatroni and A. Chambolle, SIAM J. Optim., 29 (2019), pp. 1772-1798; A. Chambolle and T. Pock, Acta Numer., 25 (2016), pp. 161-319] for the minimization of the sum of two (possibly strongly) convex functions. The proposed algorithm is combined with an adaptive (nonmonotone) backtracking strategy, which allows for the adjustment of the algorithmic step-size along the iterations in order to improve the convergence speed. We prove a linear convergence result for the function values, which depends on both the strong convexity moduli of the two functions and the upper and lower bounds on the spectrum of the variable metric operators. We validate the proposed algorithm, named Scaled Adaptive GEneralized FISTA (SAGE-FISTA), on exemplar image denoising and deblurring problems where edge-preserving total variation (TV) regularization is combined with Kullback-Leibler-type fidelity terms, as is common in applications where signal-dependent Poisson noise is assumed in the data.File | Dimensione | Formato | |
---|---|---|---|
2101.03915.pdf
Open access
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris