This paper focuses on an inexact block coordinate method designed for nonsmooth optimization, where each block-subproblem is solved by performing a bounded number of steps of a variable metric proximal–gradient method with linesearch. We improve on the existing analysis for this algorithm in the nonconvex setting, showing that the iterates converge to a stationary point of the objective function even when the proximal operator is computed inexactly, according to an implementable inexactness condition. The result is obtained by introducing an appropriate surrogate function that takes into account the inexact evaluation of the proximal operator, and assuming that such function satisfies the Kurdyka–Łojasiewicz inequality. The proof technique employed here may be applied to other new or existing block coordinate methods suited for the same class of optimization problems.

Analysis of a variable metric block coordinate method under proximal errors / Rebegoldi, S.. - In: ANNALI DELL'UNIVERSITÀ DI FERRARA. SEZIONE 7: SCIENZE MATEMATICHE. - ISSN 0430-3202. - (2022), pp. 1-39. [10.1007/s11565-022-00456-z]

Analysis of a variable metric block coordinate method under proximal errors

Rebegoldi S.
Membro del Collaboration Group
2022

Abstract

This paper focuses on an inexact block coordinate method designed for nonsmooth optimization, where each block-subproblem is solved by performing a bounded number of steps of a variable metric proximal–gradient method with linesearch. We improve on the existing analysis for this algorithm in the nonconvex setting, showing that the iterates converge to a stationary point of the objective function even when the proximal operator is computed inexactly, according to an implementable inexactness condition. The result is obtained by introducing an appropriate surrogate function that takes into account the inexact evaluation of the proximal operator, and assuming that such function satisfies the Kurdyka–Łojasiewicz inequality. The proof technique employed here may be applied to other new or existing block coordinate methods suited for the same class of optimization problems.
2022
1
39
Analysis of a variable metric block coordinate method under proximal errors / Rebegoldi, S.. - In: ANNALI DELL'UNIVERSITÀ DI FERRARA. SEZIONE 7: SCIENZE MATEMATICHE. - ISSN 0430-3202. - (2022), pp. 1-39. [10.1007/s11565-022-00456-z]
Rebegoldi, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1330769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact