The literature on condition monitoring is nowadays characterized by a wide variety of machine learning approaches. We argue that, in most of the works, the experimental evaluation is conducted in an oversimplified scenario, where training and test data contain samples obtained under the same radial and torsional load conditions. In this paper, we propose to apply an interpretable machine learning model, namely decision trees, to perform fault detection and recognition across different load configurations, a challenging benchmark that requires general-ization capabilities. The rules extracted from the trees provide explanations of the classification process.
Cross-Load Generalization of Bearing Fault Recognition with Decision Trees / Briglia, Giovanni; Immovilli, Fabio; Cocconcelli, Marco; Lippi, Marco. - (2023), pp. 400-406. (Intervento presentato al convegno 7th International Conference on System Reliability and Safety, ICSRS 2023 tenutosi a Bologna, Italy nel 23-24 November 2023) [10.1109/ICSRS59833.2023.10381353].
Cross-Load Generalization of Bearing Fault Recognition with Decision Trees
Briglia Giovanni;Immovilli Fabio;Cocconcelli Marco;Lippi Marco
2023
Abstract
The literature on condition monitoring is nowadays characterized by a wide variety of machine learning approaches. We argue that, in most of the works, the experimental evaluation is conducted in an oversimplified scenario, where training and test data contain samples obtained under the same radial and torsional load conditions. In this paper, we propose to apply an interpretable machine learning model, namely decision trees, to perform fault detection and recognition across different load configurations, a challenging benchmark that requires general-ization capabilities. The rules extracted from the trees provide explanations of the classification process.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris