The digital transformation of the Justice domain and the resulting availability of vast amounts of data describing people and their criminal behaviors offer significant promise to feed multiple research areas and enhance the criminal justice system. Achieving this vision requires the integration of different sources to create an accurate and unified representation that enables detailed and extensive data analysis. However, the collection and processing of sensitive legal-related data about individuals imposes consideration of privacy legislation and confidentiality implications. This paper presents the lesson learned from the design and develop of a Privacy-Preserving Data Integration (PPDI) architecture and process to address the challenges and opportunities of integrating personal data belonging to criminal and court sources within the Italian Justice Domain in compliance with GDPR.

Privacy-Preserving Data Integration for Digital Justice / Trigiante, L.; Beneventano, D.; Bergamaschi, S.. - 14319:(2023), pp. 172-177. (Intervento presentato al convegno 42nd International Conference on Conceptual Modeling, ER 2023 tenutosi a prt nel 2023) [10.1007/978-3-031-47112-4_16].

Privacy-Preserving Data Integration for Digital Justice

Trigiante L.
Project Administration
;
Beneventano D.;Bergamaschi S.
2023

Abstract

The digital transformation of the Justice domain and the resulting availability of vast amounts of data describing people and their criminal behaviors offer significant promise to feed multiple research areas and enhance the criminal justice system. Achieving this vision requires the integration of different sources to create an accurate and unified representation that enables detailed and extensive data analysis. However, the collection and processing of sensitive legal-related data about individuals imposes consideration of privacy legislation and confidentiality implications. This paper presents the lesson learned from the design and develop of a Privacy-Preserving Data Integration (PPDI) architecture and process to address the challenges and opportunities of integrating personal data belonging to criminal and court sources within the Italian Justice Domain in compliance with GDPR.
2023
26-ott-2023
42nd International Conference on Conceptual Modeling, ER 2023
prt
2023
14319
172
177
Trigiante, L.; Beneventano, D.; Bergamaschi, S.
Privacy-Preserving Data Integration for Digital Justice / Trigiante, L.; Beneventano, D.; Bergamaschi, S.. - 14319:(2023), pp. 172-177. (Intervento presentato al convegno 42nd International Conference on Conceptual Modeling, ER 2023 tenutosi a prt nel 2023) [10.1007/978-3-031-47112-4_16].
File in questo prodotto:
File Dimensione Formato  
TrigianteL_JUSMOD_ER2023_PPDI.pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 547.29 kB
Formato Adobe PDF
547.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1329550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact