Organic crystals are emerging as mechanically compliant, light-weight and chemically versatile alternatives to the commonly used silica and polymer waveguides. However, the previously reported organic crystals were shown to be able to transmit visible light, whereas actual implementation in telecommunication devices requires transparency in the near-infrared spectral range. Here we demonstrate that single crystals of the amino acid L-threonine could be used as optical waveguides and filters with high mechanical and thermal robustness for transduction of signals in the telecommunications range. On their (001 ¯) face, crystals of this material have an extraordinarily high Young’s modulus (40.95 ± 1.03 GPa) and hardness (1.98 ± 0.11 GPa) for an organic crystal. First-principles density functional theory calculations, used in conjunction with analysis of the energy frameworks to correlate the structure with the anisotropy in the Young’s modulus, showed that the high stiffness arises as a consequence of the strong charge-assisted hydrogen bonds between the zwitterions. The crystals have low optical loss in the O, E, S and C bands of the spectrum (1250−1600 nm), while they effectively block infrared light below 1200 nm. This property favors these and possibly other related organic crystals as all-organic fiber-optic waveguides and filters for transduction of information.

Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared / Karothu, D. P.; Dushaq, G.; Ahmed, E.; Catalano, L.; Polavaram, S.; Ferreira, R.; Li, L.; Mohamed, S.; Rasras, M.; Naumov, P.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 12:1(2021), pp. 1-8. [10.1038/s41467-021-21324-y]

Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared

Catalano L.;
2021

Abstract

Organic crystals are emerging as mechanically compliant, light-weight and chemically versatile alternatives to the commonly used silica and polymer waveguides. However, the previously reported organic crystals were shown to be able to transmit visible light, whereas actual implementation in telecommunication devices requires transparency in the near-infrared spectral range. Here we demonstrate that single crystals of the amino acid L-threonine could be used as optical waveguides and filters with high mechanical and thermal robustness for transduction of signals in the telecommunications range. On their (001 ¯) face, crystals of this material have an extraordinarily high Young’s modulus (40.95 ± 1.03 GPa) and hardness (1.98 ± 0.11 GPa) for an organic crystal. First-principles density functional theory calculations, used in conjunction with analysis of the energy frameworks to correlate the structure with the anisotropy in the Young’s modulus, showed that the high stiffness arises as a consequence of the strong charge-assisted hydrogen bonds between the zwitterions. The crystals have low optical loss in the O, E, S and C bands of the spectrum (1250−1600 nm), while they effectively block infrared light below 1200 nm. This property favors these and possibly other related organic crystals as all-organic fiber-optic waveguides and filters for transduction of information.
2021
12
1
1
8
Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared / Karothu, D. P.; Dushaq, G.; Ahmed, E.; Catalano, L.; Polavaram, S.; Ferreira, R.; Li, L.; Mohamed, S.; Rasras, M.; Naumov, P.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 12:1(2021), pp. 1-8. [10.1038/s41467-021-21324-y]
Karothu, D. P.; Dushaq, G.; Ahmed, E.; Catalano, L.; Polavaram, S.; Ferreira, R.; Li, L.; Mohamed, S.; Rasras, M.; Naumov, P.
File in questo prodotto:
File Dimensione Formato  
s41467-021-21324-y.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1329251
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 64
social impact