ABTRACT: Soil and weather data were used to analyse spatio-temporal yield patterns of winter cereals (wheat) and spring dicots (sunflower and coriander) in an 11-ha field in Northern Italy (44.5° N, 12.2° E), during 2010–2014. Three yield stability classes (YSCs) were established over multiple years, based on spatio-temporal characteristics across the field: high yielding and stable (HYS), low yielding and stable (LYS), and unstable. The HYS class (46% of field area) staged a 122% relative yield with low temporal variability. The unstable class (24% of field area) was slightly more productive (83% relative yield) than the LYS class (30% of field area, and 80% relative yield), but less consistent over time. Crop yields evidenced negative correlations with sand content; positive correlations with silt and clay content. Soil properties were quite consistently classified among YSCs: the LYS and unstable classes were associated with higher sand content and lower cation exchange capacity, suggesting that these characteristics lead to fluctuation and depression of final yield. Establishing YSCs based on spatio-temporal yield appears a sound approach to appraise field potential. It results in strategic and tactical decisions to be taken, depending on the profile of spatial and temporal productivity in different field areas.
Soil and climate factors drive spatio-temporal variability of arable crop yields under uniform management in Northern Italy / Ali, A.; Martelli, R.; Scudiero, E.; Lupia, F.; Falsone, G.; Rondelli, V.; Barbanti, L.. - In: ARCHIVES OF AGRONOMY AND SOIL SCIENCE. - ISSN 1476-3567. - 69:1(2023), pp. 75-89. [10.1080/03650340.2021.1958320]
Soil and climate factors drive spatio-temporal variability of arable crop yields under uniform management in Northern Italy
Martelli R.;
2023
Abstract
ABTRACT: Soil and weather data were used to analyse spatio-temporal yield patterns of winter cereals (wheat) and spring dicots (sunflower and coriander) in an 11-ha field in Northern Italy (44.5° N, 12.2° E), during 2010–2014. Three yield stability classes (YSCs) were established over multiple years, based on spatio-temporal characteristics across the field: high yielding and stable (HYS), low yielding and stable (LYS), and unstable. The HYS class (46% of field area) staged a 122% relative yield with low temporal variability. The unstable class (24% of field area) was slightly more productive (83% relative yield) than the LYS class (30% of field area, and 80% relative yield), but less consistent over time. Crop yields evidenced negative correlations with sand content; positive correlations with silt and clay content. Soil properties were quite consistently classified among YSCs: the LYS and unstable classes were associated with higher sand content and lower cation exchange capacity, suggesting that these characteristics lead to fluctuation and depression of final yield. Establishing YSCs based on spatio-temporal yield appears a sound approach to appraise field potential. It results in strategic and tactical decisions to be taken, depending on the profile of spatial and temporal productivity in different field areas.File | Dimensione | Formato | |
---|---|---|---|
2021 Soil and climate factors drive spatio_Archives.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
4.29 MB
Formato
Adobe PDF
|
4.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris