We prove the well posedness of a class of non linear and non local mixed hyperbolic–parabolic systems in bounded domains, with Dirichlet boundary conditions. In view of control problems, stability estimates on the dependence of solutions on data and parameters are also provided. These equations appear in models devoted to population dynamics or to epidemiology, for instance.

NON LINEAR HYPERBOLIC–PARABOLIC SYSTEMS WITH DIRICHLET BOUNDARY CONDITIONS / Colombo, Rinaldo M.; Rossi, Elena. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - 37:7-8(2024), pp. 443-478. [10.57262/die037-0708-443]

NON LINEAR HYPERBOLIC–PARABOLIC SYSTEMS WITH DIRICHLET BOUNDARY CONDITIONS

Elena Rossi
2024

Abstract

We prove the well posedness of a class of non linear and non local mixed hyperbolic–parabolic systems in bounded domains, with Dirichlet boundary conditions. In view of control problems, stability estimates on the dependence of solutions on data and parameters are also provided. These equations appear in models devoted to population dynamics or to epidemiology, for instance.
2024
37
7-8
443
478
NON LINEAR HYPERBOLIC–PARABOLIC SYSTEMS WITH DIRICHLET BOUNDARY CONDITIONS / Colombo, Rinaldo M.; Rossi, Elena. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - 37:7-8(2024), pp. 443-478. [10.57262/die037-0708-443]
Colombo, Rinaldo M.; Rossi, Elena
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1328733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact