A problem that is frequently encountered in many areas of scientific research is that of estimating the effect of a non-randomized binary intervention on an outcome of interest by using time series data on units that received the intervention (‘treated’) and units that did not (‘controls’). One popular estimation method in this setting is based on the factor analysis (FA) model. The FA model is fitted to the preintervention outcome data on treated units and all the outcome data on control units, and the counterfactual treatment-free post-intervention outcomes of the former are predicted from the fitted model. Intervention effects are estimated as the observed outcomes minus these predicted counterfactual outcomes. We propose a model that extends the FA model for estimating intervention effects by jointly modelling the multiple outcomes to exploit shared variability, and assuming an auto-regressive structure on factors to account for temporal correlations in the outcome. Using simulation studies, we show that the method proposed can improve the precision of the intervention effect estimates and achieve better control of the type I error rate (compared with the FA model), especially when either the number of preintervention measurements or the number of control units is small. We apply our method to estimate the effect of stricter alcohol licensing policies on alcohol-related harms.

A Bayesian multivariate factor analysis model for evaluating an intervention by using observational time series data on multiple outcomes / Samartsidis, P.; Seaman, S. R.; Montagna, S.; Charlett, A.; Hickman, M.; Angelis, D. D.. - In: JOURNAL OF THE ROYAL STATISTICAL SOCIETY. SERIES A. STATISTICS IN SOCIETY. - ISSN 0964-1998. - 183:4(2020), pp. 1437-1459. [10.1111/rssa.12569]

A Bayesian multivariate factor analysis model for evaluating an intervention by using observational time series data on multiple outcomes

Montagna S.;
2020

Abstract

A problem that is frequently encountered in many areas of scientific research is that of estimating the effect of a non-randomized binary intervention on an outcome of interest by using time series data on units that received the intervention (‘treated’) and units that did not (‘controls’). One popular estimation method in this setting is based on the factor analysis (FA) model. The FA model is fitted to the preintervention outcome data on treated units and all the outcome data on control units, and the counterfactual treatment-free post-intervention outcomes of the former are predicted from the fitted model. Intervention effects are estimated as the observed outcomes minus these predicted counterfactual outcomes. We propose a model that extends the FA model for estimating intervention effects by jointly modelling the multiple outcomes to exploit shared variability, and assuming an auto-regressive structure on factors to account for temporal correlations in the outcome. Using simulation studies, we show that the method proposed can improve the precision of the intervention effect estimates and achieve better control of the type I error rate (compared with the FA model), especially when either the number of preintervention measurements or the number of control units is small. We apply our method to estimate the effect of stricter alcohol licensing policies on alcohol-related harms.
2020
183
4
1437
1459
A Bayesian multivariate factor analysis model for evaluating an intervention by using observational time series data on multiple outcomes / Samartsidis, P.; Seaman, S. R.; Montagna, S.; Charlett, A.; Hickman, M.; Angelis, D. D.. - In: JOURNAL OF THE ROYAL STATISTICAL SOCIETY. SERIES A. STATISTICS IN SOCIETY. - ISSN 0964-1998. - 183:4(2020), pp. 1437-1459. [10.1111/rssa.12569]
Samartsidis, P.; Seaman, S. R.; Montagna, S.; Charlett, A.; Hickman, M.; Angelis, D. D.
File in questo prodotto:
File Dimensione Formato  
rssa.12569.pdf

Open access

Descrizione: Open Access Article
Tipologia: Versione pubblicata dall'editore
Dimensione 2.89 MB
Formato Adobe PDF
2.89 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1328732
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact