Scattered polynomials of a given index over finite fields are intriguing rare objects with many connections within mathematics. Of particular interest are the exceptional ones, as defined in 2018 by the first author and Zhou, for which partial classification results are known. In this paper we propose a unified algebraic description of F(q)n-linear maximum rank distance codes, introducing the notion of exceptional linear maximum rank distance codes of a given index. Such a connection naturally extends the notion of exceptionality for a scattered polynomial in the rank metric framework and provides a generalization of Moore sets in the monomial MRD context. We move towards the classification of exceptional linear MRD codes, by showing that the ones of index zero are generalized Gabidulin codes and proving that in the positive index case the code contains an exceptional scattered polynomial of the same index.

Linear Maximum Rank Distance Codes of Exceptional Type / Bartoli, D.; Zini, G.; Zullo, F.. - In: IEEE TRANSACTIONS ON INFORMATION THEORY. - ISSN 0018-9448. - 69:6(2023), pp. 3627-3636. [10.1109/TIT.2023.3243682]

Linear Maximum Rank Distance Codes of Exceptional Type

Zini G.;
2023

Abstract

Scattered polynomials of a given index over finite fields are intriguing rare objects with many connections within mathematics. Of particular interest are the exceptional ones, as defined in 2018 by the first author and Zhou, for which partial classification results are known. In this paper we propose a unified algebraic description of F(q)n-linear maximum rank distance codes, introducing the notion of exceptional linear maximum rank distance codes of a given index. Such a connection naturally extends the notion of exceptionality for a scattered polynomial in the rank metric framework and provides a generalization of Moore sets in the monomial MRD context. We move towards the classification of exceptional linear MRD codes, by showing that the ones of index zero are generalized Gabidulin codes and proving that in the positive index case the code contains an exceptional scattered polynomial of the same index.
2023
69
6
3627
3636
Linear Maximum Rank Distance Codes of Exceptional Type / Bartoli, D.; Zini, G.; Zullo, F.. - In: IEEE TRANSACTIONS ON INFORMATION THEORY. - ISSN 0018-9448. - 69:6(2023), pp. 3627-3636. [10.1109/TIT.2023.3243682]
Bartoli, D.; Zini, G.; Zullo, F.
File in questo prodotto:
File Dimensione Formato  
2023_BartoliZiniZullo_IEEE.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1328611
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact