Densification of ceramic electrolytes is a key enabler in producing electrolyte pellets for solid-state batteries. This requires understanding the correlation between the starting grain size of electrolytes, chemical phase evolution and degree of compaction which determine ion conductivity and chemical stability of solid electrolytes. In our work we were able to optimize the densification process of LATP at 700 °C with a high total ionic conductivity of 3.45×10−4 S cm−1 after hot pressing, balancing pristine LATP crystallite size and AlPO4 impurity formation. By combining several techniques such as in situ heating X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR), we explored the formation mechanism of AlPO4 during the synthesis process of NASICON-type Li1.5Al0.5Ti1.5(PO4)3 (LATP) electrolyte and we showed the effects of the annealing temperature on the crystal size of the material. Density functional theory (DFT) calculations on the chemical stability of the electrolyte imply a metastable behaviour of LATP furtherly enhanced by particle nano-structuring at high temperature. Our results point to facile manufacturing of ceramic electrolytes towards energy dense and safe solid-state battery technology.

Influence of AlPO4 Impurity on the Electrochemical Properties of NASICON-Type Li1.5Al0.5Ti1.5(PO4)3 Solid Electrolyte / Campanella, D.; Krachkovskiy, S.; Faure, C.; Zhu, W.; Feng, Z.; Savoie, S.; Girard, G.; Demers, H.; Vijh, A.; George, C.; Armand, M.; Belanger, D.; Paolella, A.. - In: CHEMELECTROCHEM. - ISSN 2196-0216. - 9:24(2022), pp. 040515-040515. [10.1002/celc.202200984]

Influence of AlPO4 Impurity on the Electrochemical Properties of NASICON-Type Li1.5Al0.5Ti1.5(PO4)3 Solid Electrolyte

Paolella A.
Conceptualization
2022

Abstract

Densification of ceramic electrolytes is a key enabler in producing electrolyte pellets for solid-state batteries. This requires understanding the correlation between the starting grain size of electrolytes, chemical phase evolution and degree of compaction which determine ion conductivity and chemical stability of solid electrolytes. In our work we were able to optimize the densification process of LATP at 700 °C with a high total ionic conductivity of 3.45×10−4 S cm−1 after hot pressing, balancing pristine LATP crystallite size and AlPO4 impurity formation. By combining several techniques such as in situ heating X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR), we explored the formation mechanism of AlPO4 during the synthesis process of NASICON-type Li1.5Al0.5Ti1.5(PO4)3 (LATP) electrolyte and we showed the effects of the annealing temperature on the crystal size of the material. Density functional theory (DFT) calculations on the chemical stability of the electrolyte imply a metastable behaviour of LATP furtherly enhanced by particle nano-structuring at high temperature. Our results point to facile manufacturing of ceramic electrolytes towards energy dense and safe solid-state battery technology.
2022
9
24
040515
040515
Influence of AlPO4 Impurity on the Electrochemical Properties of NASICON-Type Li1.5Al0.5Ti1.5(PO4)3 Solid Electrolyte / Campanella, D.; Krachkovskiy, S.; Faure, C.; Zhu, W.; Feng, Z.; Savoie, S.; Girard, G.; Demers, H.; Vijh, A.; George, C.; Armand, M.; Belanger, D.; Paolella, A.. - In: CHEMELECTROCHEM. - ISSN 2196-0216. - 9:24(2022), pp. 040515-040515. [10.1002/celc.202200984]
Campanella, D.; Krachkovskiy, S.; Faure, C.; Zhu, W.; Feng, Z.; Savoie, S.; Girard, G.; Demers, H.; Vijh, A.; George, C.; Armand, M.; Belanger, D.; Paolella, A.
File in questo prodotto:
File Dimensione Formato  
La_Monaca_2022_J._Electrochem._Soc._169_040515 (2).pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1328516
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact