We report the synthesis of ceramic Li1.5Al0.5Ge1.5(PO4)3 (LAGP) nanofibers by combining sol–gel and electrospinning techniques. A homogeneous and stable precursor solution based on chlorides was achieved by controlling Ge hydrolysis. Subsequent electrospinning and heat treatment resulted in highly porous nanostructured NASICON pellets. After a full chemical-physical characterization, various amounts of LAGP nanofibers were used as a filler to develop polyethylene oxide (PEO)-based composite electrolytes. The addition of 10% LAGP nanofibers has allowed doubling the ionic conductivity of the plain polymer electrolyte, by providing longer ion-conductive paths and reducing PEO crystallinity. These findings are promising towards developing solution-based synthesis approaches featuring Ge precursors. In addition, the achieved LAGP nanofibers proved to be a promising nanofiller candidate to develop composite electrolytes for next-generation solid-state batteries.

Synthesis of electrospun NASICON Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte nanofibers by control of germanium hydrolysis / la Monaca, A.; Girard, G.; Savoie, S.; Bertoni, G.; Krachkovskiy, S.; Vijh, A.; Pierini, F.; Rosei, F.; Paolella, A.. - In: JOURNAL OF THE ELECTROCHEMICAL SOCIETY. - ISSN 0013-4651. - 168:11(2021), pp. 110512-110512. [10.1149/1945-7111/ac334a]

Synthesis of electrospun NASICON Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte nanofibers by control of germanium hydrolysis

Paolella A.
Conceptualization
2021

Abstract

We report the synthesis of ceramic Li1.5Al0.5Ge1.5(PO4)3 (LAGP) nanofibers by combining sol–gel and electrospinning techniques. A homogeneous and stable precursor solution based on chlorides was achieved by controlling Ge hydrolysis. Subsequent electrospinning and heat treatment resulted in highly porous nanostructured NASICON pellets. After a full chemical-physical characterization, various amounts of LAGP nanofibers were used as a filler to develop polyethylene oxide (PEO)-based composite electrolytes. The addition of 10% LAGP nanofibers has allowed doubling the ionic conductivity of the plain polymer electrolyte, by providing longer ion-conductive paths and reducing PEO crystallinity. These findings are promising towards developing solution-based synthesis approaches featuring Ge precursors. In addition, the achieved LAGP nanofibers proved to be a promising nanofiller candidate to develop composite electrolytes for next-generation solid-state batteries.
2021
168
11
110512
110512
Synthesis of electrospun NASICON Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte nanofibers by control of germanium hydrolysis / la Monaca, A.; Girard, G.; Savoie, S.; Bertoni, G.; Krachkovskiy, S.; Vijh, A.; Pierini, F.; Rosei, F.; Paolella, A.. - In: JOURNAL OF THE ELECTROCHEMICAL SOCIETY. - ISSN 0013-4651. - 168:11(2021), pp. 110512-110512. [10.1149/1945-7111/ac334a]
la Monaca, A.; Girard, G.; Savoie, S.; Bertoni, G.; Krachkovskiy, S.; Vijh, A.; Pierini, F.; Rosei, F.; Paolella, A.
File in questo prodotto:
File Dimensione Formato  
La_Monaca_2021_J._Electrochem._Soc._168_110512.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1328501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact