We study the impact of quantum mechanical effects on the fin Electron-Hole Bilayer Tunnel FET (EHBTFET) considering different geometries. Through quantum simulations based on the effective mass approximation (EMA), it is found that the fin EHBTFET is affected by the corner effects at the substrate-fin interface, due to reduced electrostatic control that causes a dramatic reduction of the ON current. Three different solutions; corner smoothing, corner doping and trapezoidal fins; are proposed and their efficiency are assessed. The corner smoothing turns out to be ineffective whereas trapezoidal fins entail a device performance trade-off. Utilizing corner doping is the most viable choice to achieve a large ON current.
Impact of Device Geometry of the Fin Electron-Hole Bilayer Tunnel FET / Alper, C.; Padilla, J. L.; Palestri, Pierpaolo; Ionescu, A. M.. - 2016:(2016), pp. 307-310. (Intervento presentato al convegno 46th European Solid-State Device Research Conference, ESSDERC 2016 tenutosi a Lausanne, Svizzera nel 12-15 Settembre 2016) [10.1109/ESSDERC.2016.7599647].
Impact of Device Geometry of the Fin Electron-Hole Bilayer Tunnel FET
PALESTRI, Pierpaolo;
2016
Abstract
We study the impact of quantum mechanical effects on the fin Electron-Hole Bilayer Tunnel FET (EHBTFET) considering different geometries. Through quantum simulations based on the effective mass approximation (EMA), it is found that the fin EHBTFET is affected by the corner effects at the substrate-fin interface, due to reduced electrostatic control that causes a dramatic reduction of the ON current. Three different solutions; corner smoothing, corner doping and trapezoidal fins; are proposed and their efficiency are assessed. The corner smoothing turns out to be ineffective whereas trapezoidal fins entail a device performance trade-off. Utilizing corner doping is the most viable choice to achieve a large ON current.File | Dimensione | Formato | |
---|---|---|---|
Alper_ESSDERC_2016.pdf
Accesso riservato
Dimensione
742.47 kB
Formato
Adobe PDF
|
742.47 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris