The deciphering of the genetic code takes place through the reading of the nitrogenous bases, which are four in number. In most cases, the bases are taken three by three, thus generating 64 possible combinations with repetition. Each combination (codon) allows for the synthesis of a specific amino acid. Since the latter are only 21 in number, the codon-amino acid conversion table shows a strong redundancy. Countless efforts have been made to understand the true encryption mechanism. Here, we want to add our version, which consists of associating a periodic sound based on three notes to each codon. RNA now becomes a dynamic object and not just a list of static instructions. In addition to a different interpretation of the genetic code, there is also a considerable reduction in redundancy, given that the number of periodic sounds that can be produced with three notes drops to 20 (with the addition of four pure frequencies). Finally, we discuss the possibility of how these sounds can be generated and travel inside the double helix, and possibly emitted as biophotons.

A Dynamic Representation of mRNA Nucleotides Clarifies the Conundrum of Codon Redundancy / Funaro, D.. - In: BIOPHYSICA. - ISSN 2673-4125. - 3:3(2023), pp. 548-557. [10.3390/biophysica3030037]

A Dynamic Representation of mRNA Nucleotides Clarifies the Conundrum of Codon Redundancy

Funaro D.
2023

Abstract

The deciphering of the genetic code takes place through the reading of the nitrogenous bases, which are four in number. In most cases, the bases are taken three by three, thus generating 64 possible combinations with repetition. Each combination (codon) allows for the synthesis of a specific amino acid. Since the latter are only 21 in number, the codon-amino acid conversion table shows a strong redundancy. Countless efforts have been made to understand the true encryption mechanism. Here, we want to add our version, which consists of associating a periodic sound based on three notes to each codon. RNA now becomes a dynamic object and not just a list of static instructions. In addition to a different interpretation of the genetic code, there is also a considerable reduction in redundancy, given that the number of periodic sounds that can be produced with three notes drops to 20 (with the addition of four pure frequencies). Finally, we discuss the possibility of how these sounds can be generated and travel inside the double helix, and possibly emitted as biophotons.
2023
3
3
548
557
A Dynamic Representation of mRNA Nucleotides Clarifies the Conundrum of Codon Redundancy / Funaro, D.. - In: BIOPHYSICA. - ISSN 2673-4125. - 3:3(2023), pp. 548-557. [10.3390/biophysica3030037]
Funaro, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1327368
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact