The release of nanomaterials into the environment is the cause of an emerging concern. Titanium dioxide nanoparticles (nano-TiO2) among the most produced nanomaterials, has been documented in marine coastal areas posing a threat on marine biota. Sea urchin embryos are recognized as suitable bioindicators in ecological risk assessment and recently for nanomaterials. This study investigated the impact of nano-TiO2 on fertilization, embryonic and larval development of the tropical sea urchin Lytechinus variegatus in a range of concentrations (0.005–5 μg/mL) which includes environmentally relevant ones. The behavior of nano-TiO2 in tropical natural seawater was determined by dynamic light scattering (DLS) and toxicity was evaluated through fertilization and embryotoxicity tests, and morphological/morphometric analyses of sea urchin's larvae. Limited toxicity was recorded for nano-TiO2 in tropical sea urchin embryos and larvae, except for effects at the gastrula stage at 0.005 μg/mL. Large agglomerates of nano-TiO2 (5 μg/mL) were observed adhering onto sea urchin larvae thus probably preventing nanoparticles uptake at the highest concentrations (>0.005 μg/mL). Environmental levels of nano-TiO2 are able to cause toxicity on tropical sea urchin L. variegatus embryos with potential consequences on populations and their ecological role in tropical coastal areas.

Alterations induced by titanium dioxide nanoparticles (nano-TiO2) in fertilization and embryonic and larval development of the tropical sea urchin Lytechinus variegatus / Palmeira-Pinto, L.; Emerenciano, A. K.; Bergami, E.; Joviano, W. R.; Rosa, A. R.; Neves, C. L.; Corsi, I.; Marques-Santos, L. F.; Silva, J. R. M. C.. - In: MARINE ENVIRONMENTAL RESEARCH. - ISSN 0141-1136. - 188:(2023), pp. 1-10. [10.1016/j.marenvres.2023.106016]

Alterations induced by titanium dioxide nanoparticles (nano-TiO2) in fertilization and embryonic and larval development of the tropical sea urchin Lytechinus variegatus

Bergami E.;
2023

Abstract

The release of nanomaterials into the environment is the cause of an emerging concern. Titanium dioxide nanoparticles (nano-TiO2) among the most produced nanomaterials, has been documented in marine coastal areas posing a threat on marine biota. Sea urchin embryos are recognized as suitable bioindicators in ecological risk assessment and recently for nanomaterials. This study investigated the impact of nano-TiO2 on fertilization, embryonic and larval development of the tropical sea urchin Lytechinus variegatus in a range of concentrations (0.005–5 μg/mL) which includes environmentally relevant ones. The behavior of nano-TiO2 in tropical natural seawater was determined by dynamic light scattering (DLS) and toxicity was evaluated through fertilization and embryotoxicity tests, and morphological/morphometric analyses of sea urchin's larvae. Limited toxicity was recorded for nano-TiO2 in tropical sea urchin embryos and larvae, except for effects at the gastrula stage at 0.005 μg/mL. Large agglomerates of nano-TiO2 (5 μg/mL) were observed adhering onto sea urchin larvae thus probably preventing nanoparticles uptake at the highest concentrations (>0.005 μg/mL). Environmental levels of nano-TiO2 are able to cause toxicity on tropical sea urchin L. variegatus embryos with potential consequences on populations and their ecological role in tropical coastal areas.
2023
188
1
10
Alterations induced by titanium dioxide nanoparticles (nano-TiO2) in fertilization and embryonic and larval development of the tropical sea urchin Lytechinus variegatus / Palmeira-Pinto, L.; Emerenciano, A. K.; Bergami, E.; Joviano, W. R.; Rosa, A. R.; Neves, C. L.; Corsi, I.; Marques-Santos, L. F.; Silva, J. R. M. C.. - In: MARINE ENVIRONMENTAL RESEARCH. - ISSN 0141-1136. - 188:(2023), pp. 1-10. [10.1016/j.marenvres.2023.106016]
Palmeira-Pinto, L.; Emerenciano, A. K.; Bergami, E.; Joviano, W. R.; Rosa, A. R.; Neves, C. L.; Corsi, I.; Marques-Santos, L. F.; Silva, J. R. M. C.
File in questo prodotto:
File Dimensione Formato  
Palmeira-Pinto 2023 - nTiO2 alterations in fertilization &larval development of Lvariegatus.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 5.74 MB
Formato Adobe PDF
5.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1327350
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact