Determining lower bounds for the sum of weighted constraint violations in fixed spectrum frequency assignment problems is important in order to evaluate the performance of heuristic algorithms. It is well known that, when adopting a binary constraints model, clique and near-clique subproblems have a dominant role in the theory of lower bounds for minimum span problems. In this paper we highlight their importance for fixed spectrum problems. We present a method based on the linear relaxation of an integer programming formulation of the problem, reinforced with constraints derived from clique-like subproblems. The results obtained are encouraging both in terms of quality and in terms of computation time.
Lower Bounds for Fixed Spectrum Frequency Assignment / Montemanni, R.; Smith, D. H.; Allen, S. M.. - In: ANNALS OF OPERATIONS RESEARCH. - ISSN 0254-5330. - 107:1-4(2001), pp. 237-250. [10.1023/A:1014911401612]
Lower Bounds for Fixed Spectrum Frequency Assignment
Montemanni R.;
2001
Abstract
Determining lower bounds for the sum of weighted constraint violations in fixed spectrum frequency assignment problems is important in order to evaluate the performance of heuristic algorithms. It is well known that, when adopting a binary constraints model, clique and near-clique subproblems have a dominant role in the theory of lower bounds for minimum span problems. In this paper we highlight their importance for fixed spectrum problems. We present a method based on the linear relaxation of an integer programming formulation of the problem, reinforced with constraints derived from clique-like subproblems. The results obtained are encouraging both in terms of quality and in terms of computation time.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris