Food waste from households contributes the greatest proportion to total food waste in developed countries. Therefore, food waste reduction requires an understanding of the socio-economic (contextual and behavioural) factors that lead to its generation within the household. Addressing such a complex subject calls for sound methodological approaches that until now have been conditioned by the large number of factors involved in waste generation, by the lack of a recognised definition, and by limited available data. This work contributes to food waste generation literature by using one of the largest available datasets that includes data on the objective amount of avoidable household food waste, along with information on a series of socio-economic factors. In order to address one aspect of the complexity of the problem, machine learning algorithms (random forests and boruta) for variable selection integrated with linear modelling, model selection and averaging are implemented. Model selection addresses model structural uncertainty, which is not routinely considered in assessments of food waste in literature. The main drivers of food waste in the home selected in the most parsimonious models include household size, the presence of fussy eaters, employment status, home ownership status, and the local authority. Results, regardless of which variable set the models are run on, point toward large households as being a key target element for food waste reduction interventions.
Model selection and averaging in the assessment of the drivers of household food waste to reduce the probability of false positives / James Grainger, Matthew; Aramyan, Lusine; Piras, Simone; Edward Quested, Thomas; Righi, Simone; Setti, Marco; Vittuari, Matteo; Bruce Stewart, Gavin. - In: PLOS ONE. - ISSN 1932-6203. - 13:2(2018), pp. 1-16. [10.1371/journal.pone.0192075]
Model selection and averaging in the assessment of the drivers of household food waste to reduce the probability of false positives
Simone RIGHI;
2018
Abstract
Food waste from households contributes the greatest proportion to total food waste in developed countries. Therefore, food waste reduction requires an understanding of the socio-economic (contextual and behavioural) factors that lead to its generation within the household. Addressing such a complex subject calls for sound methodological approaches that until now have been conditioned by the large number of factors involved in waste generation, by the lack of a recognised definition, and by limited available data. This work contributes to food waste generation literature by using one of the largest available datasets that includes data on the objective amount of avoidable household food waste, along with information on a series of socio-economic factors. In order to address one aspect of the complexity of the problem, machine learning algorithms (random forests and boruta) for variable selection integrated with linear modelling, model selection and averaging are implemented. Model selection addresses model structural uncertainty, which is not routinely considered in assessments of food waste in literature. The main drivers of food waste in the home selected in the most parsimonious models include household size, the presence of fussy eaters, employment status, home ownership status, and the local authority. Results, regardless of which variable set the models are run on, point toward large households as being a key target element for food waste reduction interventions.File | Dimensione | Formato | |
---|---|---|---|
journal.pone.0192075.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
582.66 kB
Formato
Adobe PDF
|
582.66 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris