The involvement of the extracellular matrix (ECM) in lesion evolution and functional outcome is well recognized in spinal cord injury. Most attention has been dedicated to the "core" area of the lesion and scar formation, while only scattered reports consider ECM modification based on the temporal evolution and the segments adjacent to the lesion. In this study, we investigated the expression profile of 100 genes encoding for ECM proteins at 1, 8 and 45 days post-injury, in the spinal cord segments rostral and caudal to the lesion and in the scar segment, in a rat model. During both the active lesion phases and the lesion stabilization, we observed an asymmetric gene expression induced by the injury, with a higher regulation in the rostral segment of genes involved in ECM remodeling, adhesion and cell migration. Using bioinformatic approaches, the metalloproteases inhibitor Timp1 and the hyaluronan receptor Cd44 emerged as the hub genes at all post-lesion times. Results from the bioinformatic gene expression analysis were then confirmed at protein level by tissue analysis and by cell culture using primary astrocytes. These results indicated that ECM regulation also takes place outside of the lesion area in spinal cord injury.

Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury: A Data-Driven Approach / Bighinati, Andrea; Khalajzeyqami, Zahra; Antonio Baldassarro, Vito; Lorenzini, Luca; Cescatti, Maura; Moretti, Marzia; Giardino, Luciana; Calz(`(a)), Laura. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 22:4(2021), pp. 1-20. [10.3390/ijms22041744]

Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury: A Data-Driven Approach

Andrea Bighinati;
2021

Abstract

The involvement of the extracellular matrix (ECM) in lesion evolution and functional outcome is well recognized in spinal cord injury. Most attention has been dedicated to the "core" area of the lesion and scar formation, while only scattered reports consider ECM modification based on the temporal evolution and the segments adjacent to the lesion. In this study, we investigated the expression profile of 100 genes encoding for ECM proteins at 1, 8 and 45 days post-injury, in the spinal cord segments rostral and caudal to the lesion and in the scar segment, in a rat model. During both the active lesion phases and the lesion stabilization, we observed an asymmetric gene expression induced by the injury, with a higher regulation in the rostral segment of genes involved in ECM remodeling, adhesion and cell migration. Using bioinformatic approaches, the metalloproteases inhibitor Timp1 and the hyaluronan receptor Cd44 emerged as the hub genes at all post-lesion times. Results from the bioinformatic gene expression analysis were then confirmed at protein level by tissue analysis and by cell culture using primary astrocytes. These results indicated that ECM regulation also takes place outside of the lesion area in spinal cord injury.
2021
22
4
1
20
Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury: A Data-Driven Approach / Bighinati, Andrea; Khalajzeyqami, Zahra; Antonio Baldassarro, Vito; Lorenzini, Luca; Cescatti, Maura; Moretti, Marzia; Giardino, Luciana; Calz(`(a)), Laura. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 22:4(2021), pp. 1-20. [10.3390/ijms22041744]
Bighinati, Andrea; Khalajzeyqami, Zahra; Antonio Baldassarro, Vito; Lorenzini, Luca; Cescatti, Maura; Moretti, Marzia; Giardino, Luciana; Calz(`(a)), Laura
File in questo prodotto:
File Dimensione Formato  
Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury-A Data-Driven Approach.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 3.1 MB
Formato Adobe PDF
3.1 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1318426
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact