1. The application of Geometric Morphometrics has remarkably increased since 3D imaging techniques have become widespread, such as high-resolution computerised tomography, laser scanning and photogrammetry. Acquisition, 3D rendering and simplification of virtual objects produce faceting and topological artefacts, which can be counteracted by applying decimation and smoothing algorithms. Nevertheless, smoothing algorithms can have detrimental effects. This work aims at developing a method to assess the amount of information loss or recovery after the application of 3D surface smoothing. 2. Themethod presented here is conceived to optimise the smoothing procedure for 3D surfaces used in Geometric Morphometrics. We implemented the method in a tool running in the R statistical environment. 3. The tool requires one surface, one landmark set and one surface semilandmark set to estimate the best smoothing settings, including algorithm type, iteration and scale factor value. Additional parameters can be tuned by the user. We describe the method in detail, reporting the tool usage, including its main settable parameters. One example is provided as a further explanation of the method. 4. Our method reduces the chances of losing information in Geometric Morphometrics applications and is a unique attempt of standardising a widespread, potentially damaging procedure. The tool represents an advance in the application of Geometric Morphometrics.

Tuning Geometric Morphometrics: an R tool to reduce information loss caused by surface smoothing / Profico, A; Veneziano, A; Lanteri, A; Piras, P; Sansalone, G; Manzi, G. - In: METHODS IN ECOLOGY AND EVOLUTION. - ISSN 2041-210X. - 7:10(2016), pp. 1195-1200. [10.1111/2041-210X.12576]

Tuning Geometric Morphometrics: an R tool to reduce information loss caused by surface smoothing

Sansalone G;
2016

Abstract

1. The application of Geometric Morphometrics has remarkably increased since 3D imaging techniques have become widespread, such as high-resolution computerised tomography, laser scanning and photogrammetry. Acquisition, 3D rendering and simplification of virtual objects produce faceting and topological artefacts, which can be counteracted by applying decimation and smoothing algorithms. Nevertheless, smoothing algorithms can have detrimental effects. This work aims at developing a method to assess the amount of information loss or recovery after the application of 3D surface smoothing. 2. Themethod presented here is conceived to optimise the smoothing procedure for 3D surfaces used in Geometric Morphometrics. We implemented the method in a tool running in the R statistical environment. 3. The tool requires one surface, one landmark set and one surface semilandmark set to estimate the best smoothing settings, including algorithm type, iteration and scale factor value. Additional parameters can be tuned by the user. We describe the method in detail, reporting the tool usage, including its main settable parameters. One example is provided as a further explanation of the method. 4. Our method reduces the chances of losing information in Geometric Morphometrics applications and is a unique attempt of standardising a widespread, potentially damaging procedure. The tool represents an advance in the application of Geometric Morphometrics.
2016
7
10
1195
1200
Tuning Geometric Morphometrics: an R tool to reduce information loss caused by surface smoothing / Profico, A; Veneziano, A; Lanteri, A; Piras, P; Sansalone, G; Manzi, G. - In: METHODS IN ECOLOGY AND EVOLUTION. - ISSN 2041-210X. - 7:10(2016), pp. 1195-1200. [10.1111/2041-210X.12576]
Profico, A; Veneziano, A; Lanteri, A; Piras, P; Sansalone, G; Manzi, G
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1318350
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact