Epilepsy is a progressive and potentially fatal chronic disease characterized by spontaneous and recurrent seizures due to hypersynchronous brain activity. Temporal lobe epilepsy (TLE) is the most common type of adulthood drug-resistant focal epilepsy in which seizures may arise from one or more limbic areas. Mesial TLE (MTLE) is the most severe form of TLE and is characterized by hippocampal sclerosis, particularly in ventral CA3 (vCA3) area. Not all drug-resistant patients can undergo surgical resection of the epileptic focus due to multiple foci or focus in an eloquent brain region. Recently, alternative therapeutic strategies have been developed, and stem cell therapy and deep brain stimulation have been widely investigated, but both these interventions presented limitations and do not bring to a seizure-free condition. To overcome these limitations, “Hybrid enhanced regenerative medicine systems - HERMES” project proposes to heal TLE through the paradigm of enhanced regenerative medicine, based on the symbiotic integration of 3 components: bioengineered brain tissue made of neural stem cells (NSCs) and extracellular matrix (ECM) to rebuild the brain matter, neuromorphic computing system (NCS) to emulate and integrate brain function, and the artificial intelligence (AI) as a super partes coordinator. My PhD research is part of the 6-year EU funded project HERMES. In particular, my PhD project goals were: I) the transplantation of a bioengineered tissue graft into the vCA3; II) the insertion of a custom-made flexible neuromorphic device. In vivo experiments were performed on the pilocarpine model of TLE induced in adult male Sprague-Dawley rats with the systemic injection of pilocarpine, a muscarinic agonist. In order to limit the number of massive surgeries and reduce pain and discomfort in the rats, multiple injections were performed through guide cannulas. In the first part of the project, we focused to optimize a minimally invasive surgical strategy to implant guide cannula for injections in deep structures. To this purpose, we tested two different strategies and identified the one that allowed a precise injection of NSC in the desired location with minimal brain damage. To avoid the increase of intracranial pressure provided by the graft, epileptic rats were injected with the cytotoxic agent ibotenic acid. The lesion induced by ibotenic acid would also prevent to have a graft contaminated with epileptic cells which could train injected stem cell to turn into a pathological phenotype. Rats were then transplanted with green fluorescent protein (GFP)-marked NSCs in combination with marked alginate, a vegetal polysaccharide mimicking native ECM to support cell growth and differentiation. Immunofluorescence on brain slices confirmed the correct location of injected NSCs, their survival and ongoing maturation at several time points after injection. In addition, we evaluated for the first time the in vivo anti-inflammatory efficacy of alginate when co-injected with NSC. In parallel, we worked on the in vivo implantation of the neuromorphic component. Flexible probes were made of biocompatible materials. We tested two different approaches to allow the insertion into the brain of flexible substrates and found the best strategy that allow successful implant of the neuromorphic probes in the correct location. The results of my PhD project will serve for the second part of the HERMES project which consists in the integration of the biological and neuromorphic parts with AI. We demonstrated that the first steps toward enhanced regenerative medicine have been accomplished supporting the feasibility to achieve the goal of the HERMES project to heal TLE.

L'epilessia è una malattia cronica progressiva e potenzialmente fatale caratterizzata da crisi spontanee e ricorrenti causate da un’attività cerebrale ipersincrona. L'epilessia del lobo temporale (TLE) è il tipo più comune di epilessia focale, tipica dell’adulto, spesso farmaco-resistente. L’epilessia del lobo temporale mesiale (MTLE) è la forma più grave di TLE ed è caratterizzata da sclerosi ippocampale, in particolare nella zona del CA3 ventrale (CA3V). Non tutti i pazienti farmaco-resistenti sono candidabili alla resezione chirurgica del fuoco epilettico a causa di foci multipli o all’insorgenza del fuoco in una regione eloquente del cervello. Recentemente, sono state sviluppate strategie terapeutiche alternative quali la terapia con cellule staminali e la stimolazione cerebrale profonda, ma entrambi questi interventi presentano limitazioni e non portano a una risoluzione delle crisi. Il progetto HERMES "Hybrid enhanced regenerative medicine systems" si propone di guarire la TLE attraverso il paradigma della medicina rigenerativa potenziata, basata sull'integrazione simbiotica di 3 componenti: tessuto cerebrale bioingegnerizzato costituito da cellule staminali neurali (NSCs) e matrice extracellulare (ECM) per ricostruire la materia cerebrale, una componente neuromorfica (NCS) per emulare e integrare la funzione cerebrale, e l'intelligenza artificiale (AI) come coordinatore super partes. La mia ricerca di dottorato fa parte del progetto HERMES finanziato dall'UE per 6 anni. In particolare, gli obiettivi del progetto di dottorato sono: I) il trapianto di tessuto bioingegnerizzato in CA3V; II) l’inserimento di un dispositivo neuromorfico flessibile custom-made. Gli esperimenti in vivo sono stati eseguiti sul modello pilocarpina di TLE indotta in ratti maschi adulti Sprague-Dawley con un’iniezione sistemica di pilocarpina, un agonista muscarinico. Per limitare il numero di chirurgie e ridurre il dolore e la sofferenza nei ratti, sono state eseguite iniezioni multiple mediante cannule guida. Nella prima parte del progetto abbiamo messo a punto una chirurgia mininvasiva al fine di impiantare cannule guida che consentissero iniezioni in strutture profonde. A questo scopo, abbiamo testato due strategie e identificato quella che consente una precisa iniezione di NSCs nella posizione desiderata con danni cerebrali minimi. Per evitare l'aumento della pressione intracranica causata dal trapianto, ai ratti epilettici è stato iniettato un agente citotossico, acido ibotenico, la cui azione impedirebbe inoltre alle cellule epilettiche native di indurre le NSCs verso un fenotipo epilettico. I ratti sono stati trapiantati con NSCs-GFP positive, in combinazione con alginato marcato, un polisaccaride vegetale che mima la ECM sostenendo crescita e differenziamento cellulare. L'immunofluorescenza eseguita a diversi tempi su sezioni cerebrali ha mostrato la corretta posizione delle NSCs, la loro sopravvivenza e maturazione. Inoltre, abbiamo valutato in vivo l'efficacia antinfiammatoria dell'alginato co-iniettato con NSCs. Parallelamente, abbiamo lavorato sulla metodica di impianto in vivo della componente neuromorfa flessibile, realizzata con materiali biocompatibili. Abbiamo testato due approcci di inserimento della NCS flessibile in strutture cerebrali profonde e abbiamo trovato la migliore strategia che ci consente di impiantarla con successo nella corretta posizione. I risultati del mio progetto di dottorato serviranno per la seconda parte del progetto HERMES che prevede l'integrazione delle parti biologiche e di quelle neuromorfe con l'IA. Abbiamo dimostrato che sono stati compiuti i primi passi verso la medicina rigenerativa potenziata, sostenendo la fattibilità del raggiungimento dell’obiettivo del progetto HERMES di guarire la TLE.

Innesto di tessuto cerebrale bioingegnerizzato e substrati flessibili: primi passi verso una medicina rigenerativa potenziata nell'epilessia del lobo temporale / Stefania Bartoletti , 2023 Sep 11. 35. ciclo, Anno Accademico 2021/2022.

Innesto di tessuto cerebrale bioingegnerizzato e substrati flessibili: primi passi verso una medicina rigenerativa potenziata nell'epilessia del lobo temporale

BARTOLETTI, STEFANIA
2023

Abstract

Epilepsy is a progressive and potentially fatal chronic disease characterized by spontaneous and recurrent seizures due to hypersynchronous brain activity. Temporal lobe epilepsy (TLE) is the most common type of adulthood drug-resistant focal epilepsy in which seizures may arise from one or more limbic areas. Mesial TLE (MTLE) is the most severe form of TLE and is characterized by hippocampal sclerosis, particularly in ventral CA3 (vCA3) area. Not all drug-resistant patients can undergo surgical resection of the epileptic focus due to multiple foci or focus in an eloquent brain region. Recently, alternative therapeutic strategies have been developed, and stem cell therapy and deep brain stimulation have been widely investigated, but both these interventions presented limitations and do not bring to a seizure-free condition. To overcome these limitations, “Hybrid enhanced regenerative medicine systems - HERMES” project proposes to heal TLE through the paradigm of enhanced regenerative medicine, based on the symbiotic integration of 3 components: bioengineered brain tissue made of neural stem cells (NSCs) and extracellular matrix (ECM) to rebuild the brain matter, neuromorphic computing system (NCS) to emulate and integrate brain function, and the artificial intelligence (AI) as a super partes coordinator. My PhD research is part of the 6-year EU funded project HERMES. In particular, my PhD project goals were: I) the transplantation of a bioengineered tissue graft into the vCA3; II) the insertion of a custom-made flexible neuromorphic device. In vivo experiments were performed on the pilocarpine model of TLE induced in adult male Sprague-Dawley rats with the systemic injection of pilocarpine, a muscarinic agonist. In order to limit the number of massive surgeries and reduce pain and discomfort in the rats, multiple injections were performed through guide cannulas. In the first part of the project, we focused to optimize a minimally invasive surgical strategy to implant guide cannula for injections in deep structures. To this purpose, we tested two different strategies and identified the one that allowed a precise injection of NSC in the desired location with minimal brain damage. To avoid the increase of intracranial pressure provided by the graft, epileptic rats were injected with the cytotoxic agent ibotenic acid. The lesion induced by ibotenic acid would also prevent to have a graft contaminated with epileptic cells which could train injected stem cell to turn into a pathological phenotype. Rats were then transplanted with green fluorescent protein (GFP)-marked NSCs in combination with marked alginate, a vegetal polysaccharide mimicking native ECM to support cell growth and differentiation. Immunofluorescence on brain slices confirmed the correct location of injected NSCs, their survival and ongoing maturation at several time points after injection. In addition, we evaluated for the first time the in vivo anti-inflammatory efficacy of alginate when co-injected with NSC. In parallel, we worked on the in vivo implantation of the neuromorphic component. Flexible probes were made of biocompatible materials. We tested two different approaches to allow the insertion into the brain of flexible substrates and found the best strategy that allow successful implant of the neuromorphic probes in the correct location. The results of my PhD project will serve for the second part of the HERMES project which consists in the integration of the biological and neuromorphic parts with AI. We demonstrated that the first steps toward enhanced regenerative medicine have been accomplished supporting the feasibility to achieve the goal of the HERMES project to heal TLE.
Bioengineered brain tissue graft and flexible substrates: first steps towards enhanced regenerative medicine in temporal lobe epilepsy
11-set-2023
CURIA, GIULIA
File in questo prodotto:
File Dimensione Formato  
Stefania Bartoletti-PhD ThesisRevised.pdf

embargo fino al 10/09/2026

Descrizione: Tesi definitiva BARTOLETTI STEFANIA
Tipologia: Tesi di dottorato
Dimensione 14.94 MB
Formato Adobe PDF
14.94 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1316378
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact