The fire performance of a geocement-based binder was investigated with a combination of analytical techniques, in terms of changes in composition and microstructure. Geocement, formulated as Na2O∙Al2O3∙6SiO2∙20H2O, was prepared using metakaolin, sodium water-glass, rotten stone and sodium hydroxide. The mixture was homogenized by passing through a hydrodynamic cavitator. Cubes of 20 mm were prepared, hardened at laboratory conditions for 28 days, and subsequently burnt at 600, 800 and 1200 °C in a laboratory furnace. Cavitation treatment resulted in a highly amorphous binder; amorphous fraction decreased upon firing up to 800 °C due to crystallization, and increased above 1000 °C because of melt formation. Porosity increased with firing temperature and pores larger than 1 mm in diameter prevailed at 1200 °C. The material remained stable up to 1200 °C. The results indicate the adequacy of this geocement-based binder for preparing fire-protecting materials.
The effect of firing temperature on the composition and microstructure of a geocement-based binder of sodium water-glass / Sotiriadis, K.; Guzii, S.; Kumpova, I.; Macova, P.; Viani, A.. - In: DIFFUSION AND DEFECT DATA, SOLID STATE DATA. PART B, SOLID STATE PHENOMENA. - ISSN 1012-0394. - 267:(2017), pp. 58-62. (Intervento presentato al convegno 26th International Baltic Conference on Materials Engineering, 2017 tenutosi a Kaunas, Lituania nel 2017) [10.4028/www.scientific.net/SSP.267.58].
The effect of firing temperature on the composition and microstructure of a geocement-based binder of sodium water-glass
Viani A.
2017
Abstract
The fire performance of a geocement-based binder was investigated with a combination of analytical techniques, in terms of changes in composition and microstructure. Geocement, formulated as Na2O∙Al2O3∙6SiO2∙20H2O, was prepared using metakaolin, sodium water-glass, rotten stone and sodium hydroxide. The mixture was homogenized by passing through a hydrodynamic cavitator. Cubes of 20 mm were prepared, hardened at laboratory conditions for 28 days, and subsequently burnt at 600, 800 and 1200 °C in a laboratory furnace. Cavitation treatment resulted in a highly amorphous binder; amorphous fraction decreased upon firing up to 800 °C due to crystallization, and increased above 1000 °C because of melt formation. Porosity increased with firing temperature and pores larger than 1 mm in diameter prevailed at 1200 °C. The material remained stable up to 1200 °C. The results indicate the adequacy of this geocement-based binder for preparing fire-protecting materials.File | Dimensione | Formato | |
---|---|---|---|
2017_7_Sotiriadis.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
2.61 MB
Formato
Adobe PDF
|
2.61 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris