This paper deals with the existence of periodic solutions to the differential equation x'' + q(t)g(x) = 0. Here g is Lipschitz, xg(x) > 0 for all non vanishing x, g has superlinear growth at infinity and q is continuous and is allowed to change sign finitely many times. We prove that there are two periodic solutions with a precise number of zeros in each interval of positivity of q and that, moreover, for each interval of negativity, one can fix a priori whether the solution will have exactly one zero and be strictly monotone or will have no zeros and exactly one zero of the derivative. The techniques are based on the study of the Poincaré map and a careful phase plane analysis. Generalizations are discussed in order to treat more gereal Floquet-type boundary conditions.

Prescribing the nodal behaviour of periodic solutions of a superlinear equation with indefinite weight / Papini, Duccio. - In: ATTI DEL SEMINARIO MATEMATICO E FISICO DELL'UNIVERSITA' DI MODENA. - ISSN 0041-8986. - 51:1(2003), pp. 43-63.

Prescribing the nodal behaviour of periodic solutions of a superlinear equation with indefinite weight

PAPINI, DUCCIO
2003

Abstract

This paper deals with the existence of periodic solutions to the differential equation x'' + q(t)g(x) = 0. Here g is Lipschitz, xg(x) > 0 for all non vanishing x, g has superlinear growth at infinity and q is continuous and is allowed to change sign finitely many times. We prove that there are two periodic solutions with a precise number of zeros in each interval of positivity of q and that, moreover, for each interval of negativity, one can fix a priori whether the solution will have exactly one zero and be strictly monotone or will have no zeros and exactly one zero of the derivative. The techniques are based on the study of the Poincaré map and a careful phase plane analysis. Generalizations are discussed in order to treat more gereal Floquet-type boundary conditions.
2003
51
1
43
63
Prescribing the nodal behaviour of periodic solutions of a superlinear equation with indefinite weight / Papini, Duccio. - In: ATTI DEL SEMINARIO MATEMATICO E FISICO DELL'UNIVERSITA' DI MODENA. - ISSN 0041-8986. - 51:1(2003), pp. 43-63.
Papini, Duccio
File in questo prodotto:
File Dimensione Formato  
Papini_ASMFUM2003_scan.pdf

Accesso riservato

Dimensione 752.37 kB
Formato Adobe PDF
752.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1316056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact