We study the existence of positive periodic solutions to nonlinear elliptic and parabolic equations with oblique and dynamical boundary conditions and non-local terms. The results are obtained through fixed point theory, topological degree methods and properties of related linear elliptic problems with natural boundary conditions and possibly nonsymmetric principal part. As immediate consequences, we also obtain estimates on the principal eigenvalue for non-symmetric elliptic eigenvalue problems. © 2012 Juliusz Schauder University Centre for Nonlinear Studies.

Periodic solutions to nonlinear equations with oblique boundary conditions / Allegretto, W; Papini, Duccio. - In: TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS. - ISSN 1230-3429. - 40:2(2012), pp. 225-243.

Periodic solutions to nonlinear equations with oblique boundary conditions

PAPINI, Duccio
2012

Abstract

We study the existence of positive periodic solutions to nonlinear elliptic and parabolic equations with oblique and dynamical boundary conditions and non-local terms. The results are obtained through fixed point theory, topological degree methods and properties of related linear elliptic problems with natural boundary conditions and possibly nonsymmetric principal part. As immediate consequences, we also obtain estimates on the principal eigenvalue for non-symmetric elliptic eigenvalue problems. © 2012 Juliusz Schauder University Centre for Nonlinear Studies.
2012
40
2
225
243
Periodic solutions to nonlinear equations with oblique boundary conditions / Allegretto, W; Papini, Duccio. - In: TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS. - ISSN 1230-3429. - 40:2(2012), pp. 225-243.
Allegretto, W; Papini, Duccio
File in questo prodotto:
File Dimensione Formato  
AlPaTMNA_rev.pdf

Accesso riservato

Dimensione 142.23 kB
Formato Adobe PDF
142.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1316051
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact